Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 250

Search results for: Magnesium chloride

250 Decolorization and COD Reduction Efficiency of Magnesium over Iron based Salt for the Treatment of Textile Wastewater Containing Diazo and Anthraquinone Dyes

Authors: Akshaya Kumar Verma, Puspendu Bhunia*, Rajesh Roshan Dash

Abstract:

Magnesium chloride, though cost wise roughly same as of ferrous sulphate, is less commonly used coagulant in comparison to the ferrous sulphate for the treatment of wastewater. The present study was conducted to investigate the comparative effectiveness of ferrous sulphate (FeSO4.7H2O) as iron based salt and magnesium chloride (MgCl2) as magnesium based salt in terms of decolorization and chemical oxygen demand (COD) reduction efficiency of textile wastewater. The coagulants were evaluated for synthetic textile wastewater containing two diazo dyes namely Reactive Black 5 (RB5) and Congo Red (CR) and one anthraquinone dye as Disperse Blue 3 (DB3), in seven possible equi-ratio combinations. Other chemical constituents that are normally released from different textile processing units were also added to replicate a practical scenario. From this study, MgCl2/Lime was found to be a superior coagulant system as compared to FeSO4.7H2O/Lime, FeSO4.7H2O/NaOH and MgCl2/NaOH.

Keywords: Coagulation, Color removal, Magnesium chloride, Textile wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3156
249 The Effect of the Reaction Time on the Microwave Synthesis of Magnesium Borates from MgCl2.6H2O, MgO and H3BO3

Authors: E. Moroydor Derun, P. Gurses, M. Yildirim, A. S. Kipcak, T. Ibroska, S. Piskin

Abstract:

Due to their strong mechanical and thermal properties magnesium borates have a wide usage area such as ceramic industry, detergent production, friction reducing additive and grease production. In this study, microwave synthesis of magnesium borates from MgCl2.6H2O (Magnesium chloride hexahydrate), MgO (Magnesium oxide) and H3BO3 (Boric acid) for different reaction times is researched. X-ray Diffraction (XRD) and Fourier Transform Infrared (FT-IR) Spectroscopy are used to find out how the reaction time sways on the products. The superficial properties are investigated with Scanning Electron Microscopy (SEM). According to XRD analysis, the synthesized compounds are 00-041-1407 pdf coded Shabinite (Mg5(BO3)4Cl2(OH)5.4(H2O)) and 01-073-2158 pdf coded Karlite (Mg7(BO3)3(OH,Cl)5).

Keywords: Magnesium borate, microwave synthesis, XRD, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
248 Use of Magnesium as a Renewable Energy Source

Authors: Rafayel K. Kostanyan

Abstract:

The opportunities of use of metallic magnesium as a generator of hydrogen gas, as well as thermal and electric energy is presented in the paper. Various schemes of magnesium application are discussed and power characteristics of corresponding devices are presented. Economic estimation of hydrogen price obtained by different methods is made, including the use of magnesium as a source of hydrogen for transportation in comparison with gasoline. Details and prospects of our new inexpensive technology of magnesium production from magnesium hydroxide and magnesium bearing rocks (which are available worldwide and in Armenia) are analyzed. It is estimated the threshold cost of Mg production at which application of this metal in power engineering is economically justified.

Keywords: Magnesium, power generation, production, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
247 Evaluation of the Magnesium Wastes with Boron Oxide in Magnesium Borate Synthesis

Authors: A. S. Kipcak, F. T. Senberber, E. Moroydor Derun, S. Piskin

Abstract:

Magnesium wastes and scraps, one of the metal wastes, are produced by many industrial activities, all over the world. Their growing size is becoming a future problem for the world. In this study, the use of magnesium wastes as a raw material in the production of the magnesium borate hydrates are aimed. The method used in the experiments is hydrothermal synthesis. The conditions are set to, waste magnesium to B2O3, 1:3 as a molar ratio. Four different reaction times are studied which are 30, 60, 120 and 240 minutes. For the identification analyses X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy techniques are used. As a result at all the reaction times magnesium borate hydrates are synthesized and the most crystalline forms are obtained at a reaction time of 120 minutes. The overall yields of the production are found between the values of 65-80 %.

Keywords: Hydrothermal synthesis, magnesium borates, magnesium wastes, boron oxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
246 Deicing and Corrosive Performances of Calcium Acetate Deicer Made from Bamboo-Vinegar

Authors: Xinyuan Jiang, Genan Li, Zhiping Wu

Abstract:

Calcium magnesium acetate (CMA) is environmentally benign deicing chemicals that can replace sodium chloride that is widely used on roads and highways at present for snow and ice control to provide safe driving conditions during winter. The price of CMA from petroleum-derived acetic acid is quite expensive. The bamboo vinegar is the by-product from bamboo charcoal production. The bamboo vinegar was used to prepare calcium acetate as raw materials, and its deicing and corrosive performances were studied in this paper. The results show that the freezing temperature of calcium acetate is lower than that of sodium chloride when they have same molar concentration, the deicing performance of calcium acetate is better than that of sodium chloride when they have same moles, while the deicing performance of sodium chloride is better than that of calcium acetate. The corrosion of sodium chloride on iron-nail and steel-nail is larger than that of calcium acetate whether they have same mass concentration or same molar concentration, and the corrosion of sodium chloride and calcium acetate on iron-nail is larger than that on steel-nail, and calcium acetate almost hasn't corrosion on steel-nail.

Keywords: bamboo vinegar, calcium acetate, corrosion, deicer, deicing performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
245 Magnesium Waste Evaluation in Moderate Temperature (70oC) Magnesium Borate Synthesis

Authors: E. Moroydor Derun, A. S. Kipcak, A. Kaplan, S. Piskin

Abstract:

Waste problem is becoming a future problem all over the world. Magnesium wastes which can be used in recycling processes are produced by many industrial activities. Magnesium borates which have useful properties such as; high heat resistance, corrosion resistance, supermechanical strength, superinsulation, light weight, high coefficient of elasticity and so on. Addition, magnesium borates have great potential in the development of ceramic and detergents industry, whisker-reinforced composites, antiwear, and reducing friction additives.

In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC with different reaction times. Several reaction times of waste magnesium to H3BO3 were selected as; 30, 60, 120, 240 minutes. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques were applied to products. As a result, the forms of Admontite [MgO(B2O3)3.7(H2O)] and Mcallisterite [Mg2(B6O7(OH)6)2.9(H2O)] were synthesized.

Keywords: Hydrothermal synthesis, magnesium borates, waste magnesium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
244 Synthesis of Magnesium Borates from the Slurries of Magnesium Wastes by Microwave Energy

Authors: N. Tugrul, F. T. Senberber, A. S. Kipcak E. Moroydor Derun, S. Piskin

Abstract:

In this research, it is aimed not only microwave synthesis of magnesium borates but also evaluation of magnesium wastes. Synthesis process can be described with the reaction of Mg wastes and boric acid using microwave energy. X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied to synthesized minerals. According to XRD results, magnesium borate hydrate mixtures were obtained as mcallisterite (pdf# = 01-070-1902, Mg2(B6O7(OH)6)2.9(H2O)) at higher crystallinity properties was achieved at the mole ratio raw material 1:1. Also, other kinds of magnesium borate hydrates were obtained at lower crystallinity such as admontite (pdf # = 01-076-0540, MgO(B2O3)3.7(H2O)), inderite (pdf # = 01-072-2308, 2MgO.3B2O3.15(H2O)) and magnesium borate hydrates (pdf # = 01-076-0539, MgO(B2O3)3.6(H2O)). FT-IR spectrums indicated that minor changes were seen at the band values of characteristic stretching in each experiment. At the end of experiments it is seen that using microwave energy may contribute positive effects to design of synthesis process such as reducing reaction time and products at higher crystallinity.

Keywords: Magnesium wastes, boric acid, magnesium borate, microwave energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
243 The Effect of Waste Magnesium to Boric Acid Ratio in Hydrothermal Magnesium Borate Synthesis at 70oC

Authors: E. Moroydor Derun, A. S. Kipcak, A. Kaplan, S. Piskin

Abstract:

Magnesium wastes are produced by many industrial activities. This waste problem is becoming a future problem for the world. Magnesium borates have many advantages such as; high corrosion resistance, heat resistance, high coefficient of elasticity and can also be used in the production of material against radiation. Addition, magnesium borates have great potential in sectors including ceramic and detergents industry and superconducting materials. In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC. Several mole ratios of waste magnesium to H3BO3 are selected as; 1:2, 1:4, 1:6, 1:8, 1:10. Reaction time was determined as 1 hour. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are applied to products. As a result the forms of mcallisterite “Mg2(B6O7(OH)6)2.9(H2O)”, admontite “MgO(B2O3)3.7(H2O)” and magnesium boron hydrate (MgO(B2O3)3.6(H2O)” are obtained. 

Keywords: Hydrothermal synthesis, magnesium borates, waste magnesium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
242 Chloride Transport in Ultra High Performance Concrete

Authors: R. Pernicová

Abstract:

Chloride resistance in Ultra High Performance Concrete (UHPC) is determined in this paper. This work deals with the one dimension chloride transport, which can be potentially dangerous particularly for the durability of concrete structures. Risk of reinforcement corrosion due to exposure to the concrete surface to direct the action of chloride ions (mainly in the form de-icing salts or groundwater) is dangerously increases. The measured data are investigated depending on the depth of penetration of chloride ions into the concrete structure. Comparative measurements with normal strength concrete are done as well. The experimental results showed that UHCP have improved resistance of chlorides penetration than NSC and also chloride diffusion depth is significantly lower in UHCP.

Keywords: Chloride, One dimensional diffusion, Transport, Salinity, UHPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
241 Effect of Operating Conditions on Forward Osmosis for Nutrient Rejection Using Magnesium Chloride as a Draw Solution

Authors: Yatnanta Padma Devia, Tsuyoshi Imai, Takaya Higuchi, Ariyo Kanno, Koichi Yamamoto, Masahiko Sekine

Abstract:

Advanced treatments such as forward osmosis (FO) can be used to separate or reject nutrients from secondary treated effluents. Forward osmosis uses the chemical potential across the membrane, which is the osmotic pressure gradient, to induce water to flow through the membrane from a feed solution (FS) into a draw solution (DS). The performance of FO is affected by the membrane characteristics, composition of the FS and DS, and operating conditions. The aim of this study was to investigate the optimum velocity and temperature for nutrient rejection and water flux performance in FO treatments. MgCl2 was used as the DS in the FO process. The results showed that higher cross flow velocities yielded higher water fluxes. High rejection of nutrients was achieved by using a moderate cross flow velocity at 0.25 m/s. Nutrient rejection was insensitive to temperature variation, whereas water flux was significantly impacted by it. A temperature of 25°C was found to be good for nutrient rejection.

Keywords: Cross flow velocity, forward osmosis, magnesium chloride, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
240 The Effect of Solution Density on the Synthesis of Magnesium Borate from Boron-Gypsum

Authors: N. Tugrul, E. Sariburun, F. T. Senberber, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Boron-gypsum is a waste which occurs in the boric acid production process. In this study, the boron content of this waste is evaluated for the use in synthesis of magnesium borates and such evaluation of this kind of waste is useful more than storage or disposal. Magnesium borates, which are a sub-class of boron minerals, are useful additive materials for the industries due to their remarkable thermal and mechanical properties. Magnesium borates were obtained hydrothermally at different temperatures. Novelty of this study is the search of the solution density effects to magnesium borate synthesis process for the increasing the possibility of borongypsum usage as a raw material. After the synthesis process, products are subjected to XRD and FT-IR to identify and characterize their crystal structure, respectively.

Keywords: Boron-gypsum, hydrothermal synthesis, magnesium borate, solution density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
239 Magnesium Borate Synthesis by Microwave Method Using MgCl2.6H2O and H3BO3

Authors: A. S. Kipcak, P. Gurses, K. Kunt, E. Moroydor Derun, S. Piskin

Abstract:

There are many kinds of metal borates found not only in nature but also synthesized in the laboratory such as magnesium borates. Due to its excellent properties, as remarkable ceramic materials, they have also application areas in anti-wear and friction reducing additives as well as electro-conductive treating agents. The synthesis of magnesium borate powders can be fulfilled simply with two different methods, hydrothermal and thermal synthesis. Microwave assisted method, also another way of producing magnesium borate, can be classified into thermal synthesis because of using the principles of solid state synthesis. It also contributes producing particles with small size and high purity in nano-size material synthesize. In this study the production of magnesium borates, are aimed using MgCl2.6H2O and H3BO3. The identification of both starting materials and products were made by the equipments of, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). After several synthesis steps magnesium borates were synthesized and characterized by XRD and FT-IR, as well.

Keywords: FT-IR, magnesium borates, microwave method, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
238 Magnesium Alloy: A Biomaterial for Development of Degradation Rate Controllable Esophageal Stent

Authors: Li Hong Chen, Wei Zhou, Chu Sing Lim, Eng Kiong Teo, Ngai Moh Law

Abstract:

Magnesium alloy has been widely investigated as biodegradable cardiovascular stent and bone implant. Its application for biodegradable esophageal stenting remains unexplored. This paper reports the biodegradation behaviors of AZ31 magnesium alloy in artificial saliva and various types of beverage in vitro. Results show that the magnesium ion release rate of AZ31 in artificial saliva for a stent (2cm diameter, 10cm length at 50% stent surface coverage) is 43 times lower than the daily allowance of human body magnesium intakes. The degradation rates of AZ31 in different beverages could also be significantly different. These results suggest that the esophagus in nature is a less aggressive chemical environment for degradation of magnesium alloys. The significant difference in degradation rates of AZ31 in different beverages opens new opportunities for development of degradation controllable esophageal stent through customizing ingested beverages.

Keywords: Biodegradable esophageal stent, beverages, magnesium alloy, saliva.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
237 Wear Behaviors of B4C and SiC Particle Reinforced AZ91 Magnesium Matrix Metal Composites

Authors: M. E. Turan, H. Zengin, E. Cevik, Y. Sun, Y. Turen, H. Ahlatci

Abstract:

In this study, the effects of B4C and SiC particle reinforcements on wear properties of magnesium matrix metal composites produced by pressure infiltration method were investigated. AZ91 (9%Al-1%Zn) magnesium alloy was used as a matrix. AZ91 magnesium alloy was melted under an argon atmosphere. The melt was infiltrated to the particles with an appropriate pressure. Wear tests, hardness tests were performed respectively. Microstructure characterizations were examined by light optical (LOM) and scanning electron microscope (SEM). The results showed that uniform particle distributions were achieved in both B4C and SiC reinforced composites. Wear behaviors of magnesium matrix metal composites changed as a function of type of particles. SiC reinforced composite has better wear performance and higher hardness than B4C reinforced composite.

Keywords: Magnesium matrix composite, pressure infiltration, SEM, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
236 Effectiveness of Crystallization Coating Materials on Chloride Ions Ingress in Concrete

Authors: Mona Elsalamawy, Ashraf Ragab Mohamed, Abdellatif Elsayed Abosen

Abstract:

This paper aims to evaluate the effectiveness of different crystalline coating materials concerning of chloride ions penetration. The concrete ages at the coating installation and its moisture conditions were addressed; where, these two factors may play a dominant role for the effectiveness of the used materials. Rapid chloride ions penetration test (RCPT) was conducted at different ages and moisture conditions according to the relevant standard. In addition, the contaminated area and the penetration depth of the chloride ions were investigated immediately after the RCPT test using chemical identifier, 0.1 M silver nitrate AgNO3 solution. Results have shown that, the very low chloride ions penetrability, for the studied crystallization materials, were investigated only with the old age concrete (G1). The significant reduction in chloride ions’ penetrability was illustrated after 7 days of installing the crystalline coating layers. Using imageJ is more reliable to describe the contaminated area of chloride ions, where the distribution of aggregate and heterogeneous of cement mortar was considered in the images analysis.

Keywords: Chloride permeability, contaminated area, crystalline waterproofing materials, RCPT, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
235 Synthesis of Mg/B Containing Compound in a Modified Microwave Oven

Authors: Gülşah Çelik Gül, Figen Kurtuluş

Abstract:

Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN.  Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system.

Keywords: Magnesium containing boron compounds, modified microwave synthesis, powder X-ray diffraction, FTIR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 561
234 Ni-B Coating Production on Magnesium Alloy by Electroless Deposition

Authors: Ferhat Bülbül

Abstract:

The use of magnesium alloys is limited due to their susceptibility to corrosion although they have many attractive physical and mechanical properties. To increase mechanical and corrosion properties of these alloys, many deposition method and coating types are used. Electroless Ni–B coatings have received considerable interest recently due to its unique properties such as cost-effectiveness, thickness uniformity, good wear resistance, lubricity, good ductility and corrosion resistance, excellent solderability and electrical properties and antibacterial property. In this study, electroless Ni-B coating could been deposited on AZ91 magnesium alloy. The obtained coating exhibited a harder and rougher structure than the substrate.

Keywords: Amorphous, electroless Ni–B, magnesium, X-ray diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
233 Lemon Effect on Some Elements in Turkish Teas

Authors: A. S. Kipcak, O. Dere Ozdemir, E. Moroydor Derun, M. B. Piskin

Abstract:

Tea has several types of essential elements. Potassium, magnesium and phosphorus are some examples of these elements. Tea is widely used drink in Turkey, also some people puts a lemon wedge to tea for different taste. In this study potassium, magnesium and phosphorus contents after the hot water brewing of black and green tea were determined by Optical Emission Spectroscopy (ICPOES). Furthermore, how the lemon addition to teas affects the concentrations of the potassium, magnesium and phosphorus amount are investigated. From the results, potassium, magnesium and phosphorus concentrations are found as 3003.3, 597.1, 1167.2 ppm in black tea and 3718.0, 3830.5, 376.4 ppm in green tea, respectively. After lemon addition potassium, magnesium and phosphorus concentrations are changed to 14930, 830.4, 1113.5 ppm in black tea and 15460.0, 909.5, 1152.5 ppm in green tea, respectively. It is seen that lemon addition affects some essential elements in black and green Turkish teas.

Keywords: Hot water brewing, ICP-OES, lemon, tea

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
232 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.

Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531
231 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment

Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek

Abstract:

The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).

Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
230 Durability of Slurry Infiltrated Fiber Concrete to Corrosion in Chloride Environment: An Experimental Study, Part I

Authors: M. F. Alrubaie, S. A. Salih, W. A. Abbas

Abstract:

Slurry infiltrated fiber concrete (SIFCON) is considered as a special type of high strength high-performance fiber reinforced concrete, extremely strong, and ductile. The objective of this study is to investigate the durability of SIFCON to corrosion in chloride environments. Six different SIFCON mixes were made in addition to two refinance mixes with 0% and 1.5% steel fiber content. All mixes were exposed to 10% chloride solution for 180 days. Half of the specimens were partially immersed in chloride solution, and the others were exposed to weekly cycles of wetting and drying in 10% chloride solution. The effectiveness of using corrosion inhibitors, mineral admixture, and epoxy protective coating were also evaluated as protective measures to reduce the effect of chloride attack and to improve the corrosion resistance of SIFCON mixes. Corrosion rates, half-cell potential, electrical resistivity, total permeability tests had been monitored monthly. The results indicated a significant improvement in performance for SIFCON mixes exposed to chloride environment, when using corrosion inhibitor or epoxy protective coating, whereas SIFCON mix contained mineral admixture (metakaolin) did not improve the corrosion resistance at the same level. The cyclic wetting and drying exposure were more aggressive to the specimens than the partial immersion in chloride solution although the observed surface corrosion for the later was clearer.

Keywords: Chloride attack, chloride environments, corrosion inhibitor, corrosion resistance, durability, SIFCON, Slurry infiltrated fiber concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
229 Performance Enhancement of Dye-Sensitized Solar Cells by MgO Coating on TiO2 Electrodes

Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Thanachayanont

Abstract:

TiO2/MgO composite films were prepared by coating the magnesium acetate solution in the pores of mesoporous TiO2 films using a dip coating method. Concentrations of magnesium acetate solution were varied in a range of 1x10-4 – 1x10-1 M. The TiO2/MgO composite films were characterized by scanning electron microscopy (SEM), transmission electron microscropy (TEM), electrochemical impedance spectroscopy(EIS) , transient voltage decay and I-V test. The TiO2 films and TiO2/MgO composite films were immersed in a 0.3 mM N719 dye solution. The Dye-sensitized solar cells with the TiO2/MgO/N719 structure showed an optimal concentration of magnesium acetate solution of 1x10-3 M resulting in the MgO film estimated thickness of 0.0963 nm and giving the maximum efficiency of 4.85%. The improved efficiency of dyesensitized solar cell was due to the magnesium oxide film as the wide band gap coating decays the electron back transfer to the triiodide electrolyte and reduce charge recombination.

Keywords: Magnesium oxide thin film, TiO2/MgO composite films, Electrochemical Impedance Spectrum, Transient voltage decay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976
228 Selective Solvent Extraction of Calcium and Magnesium from Concentrate Nickel Solutions Using Mixtures of Cyanex 272 and D2EHPA

Authors: Alexandre S. Guimarães, Marcelo B. Mansur

Abstract:

The performance of organophosphorus extractants Cyanex 272 and D2EHPA on the purification of concentrate nickel sulfate solutions was evaluated. Batch scale tests were carried out at pH range of 2 to 7 using a laboratory solution simulating concentrate nickel liquors as those typically obtained when sulfate intermediates from nickel laterite are re-leached and treated for the selective removal of cobalt, zinc, manganese and copper with Cyanex 272 ([Ca] = 0.57 g/L, [Mg] = 3.2 g/L, and [Ni] = 88 g/L). The increase on the concentration of D2EHPA favored the calcium extraction. The extraction of magnesium is dependent on the pH and of ratio of extractants D2EHPA and Cyanex 272 in the organic phase. The composition of the investigated organic phase did not affect nickel extraction. The number of stages is dependent on the magnesium extraction. The most favorable operating condition to selectively remove calcium and magnesium was determined.

Keywords: Solvent extraction, organophosphorus extractants, alkaline earth metals, nickel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
227 Hydrated Magnesium Borate Synthesis from MgCl2.6H2O at 80oC by Hydrothermal Method

Authors: A. S. Kipcak, P. Gurses, E. Moroydor Derun, S. Piskin

Abstract:

Borate minerals have attracted considerable attention in the past years due to their structural chemistry and mechanical properties in several industries. Recently, increasing attention has been paid to the use of; synthetically produced magnesium borates as catalysts reinforcing material for plastics, the conversion of hydrocarbons, electro-conductive treating agent, anti-wear and anti-corrosion materials. Magnesium borates can be synthesized by several methods such as; hydrothermal and solid-state (thermal) processes. In this study the hydrothermal production method was applied at the modest temperature of 80C along with convenient crystal growth. Using MgCl2.6H2O, H3BO3, and NaOH as starting materials, 30, 60, 120, 240 minutes of reaction times were studied. After all, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result the forms of Admontite and Mcallisterite minerals were synthesized.

Keywords: FT-IR, hydrothermal method, magnesium borates, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
226 Evaluation of Corrosion by Impedance Spectroscopy of Embedded Steel in an Alternative Concrete Exposed to the Chloride Ion

Authors: Erika J. Ruíz, Jairo R. Cortes, Willian A. Aperador

Abstract:

In this article was evaluated the protective effect of the alternative concrete obtained from the binary mixture of fly ash, and iron and steel slag. After mixing the cement with aggregates, structural steel was inserted in the matrix cementitious. The study was conducted comparatively with specimens exposed to natural conditions free of chloride ion. The chloride ion effect on the specimens accelerated under controlled conditions (3.5% NaCl and 25°C temperature). The impedance data were acquired in a range of 1 mHz to 100 kHz.

Keywords: Alternative concrete, corrosion, alkaline activation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1113
225 Stereoselective Reduction of Amino Ketone with Sodium Borohydride in the Presence of Metal Chloride. A Simple Pathway to S-Propranolol

Authors: R. Inkum, A. Teerawutgulrag, P. Puangsombat, N. Rakariyatham

Abstract:

Propranolol is worldwide hypertension drug that is active in S-isomer. Patients must use this drug throughout their lives, and this action employsa significant level of expenditure. A simpler synthesis and lower cost can reduce the price for the patient. A sis pathway of S-propranolol starting from protection of (R,S)-propranolol with di-t-butyldicarbonate and then the product is oxidized with pyridiniumchlorochromate. The selective reduction of ketone occurrs with sodiumborohydride in the presence of metal chloride provided S-propranolol.

Keywords: S-propranolol, selective reduction, sodium borohydride, metal chloride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
224 The Removal of As(V) from Drinking Waters by Coagulation Process using Iron Salts

Authors: M. Donmez, F. Akbal

Abstract:

In this study arsenate [As(V)] removal from drinking water by coagulation process was investigated. Ferric chloride (FeCl3.6H2O) and ferrous sulfate (FeSO4.7H2O) were used as coagulant. The effects of major operating variables such as coagulant dose (1–30 mg/L) and pH (5.5–9.5) were investigated. Ferric chloride and ferrous sulfate were found as effective and reliable coagulant due to required dose, residual arsenate and coagulant concentration. Optimum pH values for maximum arsenate removal for ferrous sulfate and ferric chloride were found as 8 and 7.5. The arsenate removal efficiency decreased at neutral and acidic pH values for Fe(II) and at the high acidic and high alkaline pH for Fe(III). It was found that the increase of coagulant dose caused a substantial increase in the arsenate removal. But above a certain ferric chloride and ferrous sulfate dosage, the increase in arsenate removal was not significant. Ferric chloride and ferrous sulfate dose above 8 mg/L slightly increased arsenate removal.

Keywords: Arsenic removal, coagulation, ıron salts, drinking water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
223 Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions

Authors: Mustafa Sertçelik, Hacali Necefoğlu, Turan Çalban, Soner Kuşlu

Abstract:

In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 24 factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 oC, and the solid-to-liquid ratio 9/80 g.mL-1. The best dissolution yield in these conditions was 96.20%.

Keywords: Ammonium chloride, Chevreul’s salt, copper, Factorial experimental design method, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
222 Clinical Comparative Study Comparing Efficacy of Intrathecal Fentanyl and Magnesium as an Adjuvant to Hyperbaric Bupivacaine in Mild Pre-Eclamptic Patients Undergoing Caesarean Section

Authors: Sanchita B. Sarma, M. P. Nath

Abstract:

Adequate analgesia following caesarean section decreases morbidity, hastens ambulation, improves patient outcome and facilitates care of the newborn. Intrathecal magnesium, an NMDA antagonist, has been shown to prolong analgesia without significant side effects in healthy parturients. The aim of this study was to evaluate the onset and duration of sensory and motor block, hemodynamic effect, postoperative analgesia, and adverse effects of magnesium or fentanyl given intrathecally with hyperbaric 0.5% bupivacaine in patients with mild preeclampsia undergoing caesarean section. Sixty women with mild preeclampsia undergoing elective caesarean section were included in a prospective, double blind, controlled trial. Patients were randomly assigned to receive spinal anesthesia with 2 mL 0.5% hyperbaric bupivacaine with 12.5 μg fentanyl (group F) or 0.1 ml of 50% magnesium sulphate (50 mg) (group M) with 0.15ml preservative free distilled water. Onset, duration and recovery of sensory and motor block, time to maximum sensory block, duration of spinal anaesthesia and postoperative analgesic requirements were studied. Statistical comparison was carried out using the Chi-square or Fisher’s exact tests and Independent Student’s t-test where appropriate. The onset of both sensory and motor block was slower in the magnesium group. The duration of spinal anaesthesia (246 vs. 284) and motor block (186.3 vs. 210) were significantly longer in the magnesium group. Total analgesic top up requirement was less in group M. Hemodynamic parameters were similar in both the groups. Intrathecal magnesium caused minimal side effects. Since Fentanyl and other opioid congeners are not available throughout the country easily, magnesium with its easy availability and less side effect profile can be a cost effective alternative to fentanyl in managing pregnancy induced hypertension (PIH) patients given along with Bupivacaine intrathecally in caesarean section.

Keywords: Analgesia, magnesium, preeclampsia, spinal anaesthesia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
221 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast–Furnace Slag

Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi

Abstract:

Ceramic Waste Aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a Supplementary Cementitious Material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.

Keywords: Ceramic waste aggregate, Chloride diffusion, GGBS, Pore size distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758