Magnesium Alloy: A Biomaterial for Development of Degradation Rate Controllable Esophageal Stent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33104
Magnesium Alloy: A Biomaterial for Development of Degradation Rate Controllable Esophageal Stent

Authors: Li Hong Chen, Wei Zhou, Chu Sing Lim, Eng Kiong Teo, Ngai Moh Law

Abstract:

Magnesium alloy has been widely investigated as biodegradable cardiovascular stent and bone implant. Its application for biodegradable esophageal stenting remains unexplored. This paper reports the biodegradation behaviors of AZ31 magnesium alloy in artificial saliva and various types of beverage in vitro. Results show that the magnesium ion release rate of AZ31 in artificial saliva for a stent (2cm diameter, 10cm length at 50% stent surface coverage) is 43 times lower than the daily allowance of human body magnesium intakes. The degradation rates of AZ31 in different beverages could also be significantly different. These results suggest that the esophagus in nature is a less aggressive chemical environment for degradation of magnesium alloys. The significant difference in degradation rates of AZ31 in different beverages opens new opportunities for development of degradation controllable esophageal stent through customizing ingested beverages.

Keywords: Biodegradable esophageal stent, beverages, magnesium alloy, saliva.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087398

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293

References:


[1] J. L. Tokar, S. Banerjee, B. A. Barth, D. J. Desilets, V. Kual, S.R. Kethi et al., Drug-eluting/biodegradable stents. Gastrointestinal Endoscopy, 2011. 74(5): p. 954-958.
[2] S. Irani. and R. Kozarek, Esophageal stents: past, present, and future. 2010. 12(4): p. 178-190.
[3] P. Sharma and R. Kozarek, Role of esophageal stents in benign and malignant Diseases. Am J Gastroenterol, 2009. 105(2): p. 258-273
[4] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009. 30(4): p. 484-498.
[5] S. Schumacher, J. Stahl, W. Bäumer, J. M. Seitz, F. W Bach, L. J. Petersen, Ex vivo examination of the biocompatibility of biodegradable magnesium via microdialysis in the isolated perfused bovine udder model. International Journal of Artificial Organs, 2011. 34(1): p. 34-43.
[6] G. L. Diamond, P.E. Goodrum, S.P. Felter, W. L. Ruoff, Gastrointestinal absorption of metals. Drug and Chemical Toxicology, 1997. 20(4): p. 345-368.
[7] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, et al., Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2009. 12(5-6): p. 63-72.
[8] R. C. Orlando, Esophageal mucosal defense mechanisms. GI Mobility online, 2006.
[9] J-Y. Gal, Y. Fovet, and M. Adib-Yadzi, About a synthetic saliva for in vitro studies. Talanta, 2001. 53(6): p. 1103-1115.
[10] A. Loos, R. Rohde, A. Haverich and S. Barlach, In vitro and in vivo biocompatibility testing of absorbable metal stents. Macromolecular Symposia, 2007. 253: p. 103-108.
[11] H. Sigel and A. Sigel, Bioinorganic Chemistry of Metal toxicity, in Metal ions in biological systems: concepts on metal ion toxicity, 1986, CRC Press. p. 25.
[12] G.S. Duffó and S.B. Farina, Corrosion behaviour of a dental alloy in some beverages and drinks. Materials Chemistry and Physics, 2009. 115(1): p. 235-238.
[13] J.E. Moore Jr, J.S. Soares, and K.R. Rajagopal, Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiovascular Engineering and Technology, 2010. 1(1): p. 52-65.
[14] G.P. Talwar and L.M. Srivastava, Gastrointestinal tract, in Textbook of Biochemistry and Human Biologiy. 2003. p. 599-602
[15] M. Mobin, M.A. Khan, and M. Parveen, Inhibition of mild steel corrosion in acidic medium using starch and surfactants additives. Journal of Applied Polymer Science, 2011. 121(3): p. 1558-1565.
[16] E.S. Ferreira, C. Giacomelli, F.C. Giacomelli, A. Spinelli., Evaluation of the inhibitor effect of l-ascorbic acid on the corrosion of mild steel. Materials Chemistry and Physics, 2004. 83(1): p. 129-134.
[17] M.S.S. Morad and A.A.A. Hermas, Influence of some amino acids and vitamin C on the anodic dissolution of tin in sodium chloride solution. Journal of Chemical Technology & Biotechnology, 2001. 76(4): p. 401- 410.
[18] A. Yamamoto and S. Hiromoto, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Materials Science and Engineering C, 2009. 29(5): p. 1559-1568.
[19] N.H. Helal and W.A. Badawy, Environmentally safe corrosion inhibition of Mg–Al–Zn alloy in chloride free neutral solutions by amino acids. Electrochimica Acta, 2011. 56(19): p. 6581-6587.
[20] L. Ramalingam, L.B. Messer, and E.C. Reynolds, Adding casein phosphopeptide-amorphous calcium phosphate to sports drinks to eliminate in vitro erosion. Pediatric Dentistry, 2005. 27(1): p. 61-67.