Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30526
Synthesis of Magnesium Borates from the Slurries of Magnesium Wastes by Microwave Energy

Authors: F. T. Senberber, S. Piskin, N. Tugrul, A. S. Kipcak E. Moroydor Derun

Abstract:

In this research, it is aimed not only microwave synthesis of magnesium borates but also evaluation of magnesium wastes. Synthesis process can be described with the reaction of Mg wastes and boric acid using microwave energy. X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied to synthesized minerals. According to XRD results, magnesium borate hydrate mixtures were obtained as mcallisterite (pdf# = 01-070-1902, Mg2(B6O7(OH)6)2.9(H2O)) at higher crystallinity properties was achieved at the mole ratio raw material 1:1. Also, other kinds of magnesium borate hydrates were obtained at lower crystallinity such as admontite (pdf # = 01-076-0540, MgO(B2O3)3.7(H2O)), inderite (pdf # = 01-072-2308, 2MgO.3B2O3.15(H2O)) and magnesium borate hydrates (pdf # = 01-076-0539, MgO(B2O3)3.6(H2O)). FT-IR spectrums indicated that minor changes were seen at the band values of characteristic stretching in each experiment. At the end of experiments it is seen that using microwave energy may contribute positive effects to design of synthesis process such as reducing reaction time and products at higher crystallinity.

Keywords: Microwave Energy, magnesium wastes, boric acid, magnesium borate

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093722

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810

References:


[1] S. Kocakusak, J.H. Koroglu, E. Ekinci, R. Tolun, "Production of anhydrous borax using microwave heating”, Industrial & Engineering Chemistry Research, vol. 34, pp. 881-885, 1955.
[2] D.E. Clark, D.C. Folz, J.K. West, "Processing materials with microwave energy”, Materials Science and Engineering, vol. A287, pp. 153–158, 2000.
[3] K.E. Haque, "Microwave energy for mineral treatment processes—a brief review”, International Journal of Mineral Processing, vol. 57, pp. 1-24, 1999.
[4] W. Verstor, The effect of microwave radiation on mineral processing. University of Birmingham, PhD Thesis, 2011.
[5] K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, "Synthesis of inorganic solids using microwaves”, Chemistry of Materials, vol. 11, pp. 882-895, 1999.
[6] B.L. Newalkara, S. Komarneni, H. Katsuki, "Microwave-hydrothermal synthesis and characterization of barium titanate powders”, Materials Research Bulletin, vol. 36, pp. 2347–2355, 2001.
[7] X. Querol, A. Alastuey , A .L. Soler , F. Plana, J. M . Andreas, R. Juan, P. Ferrer , C. R. Ruiz, "A fast method for recycling fly ash: microwave-assisted zeolite synthesis”, Environmental Science & Technology, vol. 31, pp. 2527-2533, 1997.
[8] I. Vicente, P. Salagre, Y. Cesteros, F. Guirado, F. Medina, J.E. Sueiras, "Fast microwave synthesis of hectorite”, Applied Clay Science, vol. 43 pp. 103–107, 2009.
[9] D.L. Boxall, C.M. Lukehart, "Rapid synthesis of Pt or Pd/Carbon nanocomposites using microwave irradiation”, Chemistry of Materials, vol. 13, pp. 806-810, 2001.
[10] T. R. Ministry of Education, "Environmental protection, solid waste collection”, Ankara, Turkey, 2009.
[11] T. R. Ministry of Environment and Forestry, General Directorate of Environmental Management, "Waste management action plan (2008-2012)”, Ankara, 2008.
[12] A. S. Kipcak, F. T. Senberber, E. Moroydor Derun, S. Piskin, "Evaluation of the magnesium wastes with boron oxide in magnesium borate synthesis”, World Academy of Science, Engineering and Technology, vol. 67, pp. 887-891, 2012.
[13] W. Zhu, G. Li, Q. Zhang, L. Xiang, S. Zhu, "Hydrothermal mass production of MgBO2(OH) nanowhiskers and subsequent thermal conversion to Mg2B2O5 nanorods for biaxially oriented polypropylene resins reinforcement”, Powder Technology, vol. 203, pp. 265 – 271, 2010.
[14] L. Zhiyong, H. Mancheng, G. Shiyang, "Studies on synthesis, characterization and thermochemistry of Mg2
[B2O4(OH)2] H2O”, Journal of Thermal Analysis and Calorimetry, vol. 75, pp. 73 – 78, 2004.
[15] L. Zhihong, H. Mancheng, "Synthesis and thermochmistry of MgO.3B2O3.3,5H2O”, Thermochim Acta., vol. 403, pp. 181 – 184, 2003.
[16] L. Zhihong, H. Mancheng, "New synthetic method and thermochemistry of szaibelyite”, Thermochim Acta, vol. 411, 27 – 29, 2004.
[17] L.Dou, J. Zhong, H. Wang, "Preparation and characterization of magnesium borate for special glass” Physica Scripta, vol. 30, pp. 413–418, 2010.
[18] S. Li, X. Fang, J. Leng, H. Shen, Y. Fan, D. Xu, "A new route for the synthesis of Mg2B2O5 nanorods by mechano – chemical and sintering process”, Mater. Lett., vol. 64, pp. 151 – 153, 2010.
[19] E. M. Elssfah, A. Elsanousi, J. Zhang,, H. S. Song, C. Tang, "Synthesis of magnesium borate nanorods”, Materials Letters, vol. 61, pp. 4358 – 4361, 2007.
[20] Y. Zeng, H. Yang, W. Fu, L. Qiao, L. Chang, J. Chen, H. Zhu, M. Li, G. Zou, "Synthesis of magnesium borate (M2B2O5) nanowires, growth mechanism and their lubricating properties” Materials Research Bulletin, vol. 43, pp. 2239 – 2247 2008.
[21] U. Dosler, M. M. Krzmanc, D. J. Suvorov, "The synthesis and microwave dielectric properties of Mg3B2O6 and Mg2B2O5 ceramics”, Eur Ceram Soc.,vol. 30, pp. 413– 418, 2010.
[22] H. Guler, F. Kurtulus, E. Ay, G. Celik, I. Dogan, "Solid-State and Microwave-Assisted synthesis and characterization of Mg2B2O5 ve Mg3(BO3)2”, IV International Boron Symposium, October, 2009.
[23] J. Yongzhong, G. Shiyang, X. Shuping, L. Jun, "FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate”, Spectrochimica Acta Part A, vol. 56, pp. 1291-1297, 2000.