Search results for: High Speed
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6674

Search results for: High Speed

6644 Fuzzy Clustering of Locations for Degree of Accident Proneness based on Vehicle User Perceptions

Authors: Jayanth Jacob, C. V. Hariharakrishnan, Suganthi L.

Abstract:

The rapid urbanization of cities has a bane in the form road accidents that cause extensive damage to life and limbs. A number of location based factors are enablers of road accidents in the city. The speed of travel of vehicles is non-uniform among locations within a city. In this study, the perception of vehicle users is captured on a 10-point rating scale regarding the degree of variation in speed of travel at chosen locations in the city. The average rating is used to cluster locations using fuzzy c-means clustering and classify them as low, moderate and high speed of travel locations. The high speed of travel locations can be classified proactively to ensure that accidents do not occur due to the speeding of vehicles at such locations. The advantage of fuzzy c-means clustering is that a location may be a part of more than one cluster to a varying degree and this gives a better picture about the location with respect to the characteristic (speed of travel) being studied.

Keywords: C-means clustering, Location Specific, Road Accidents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
6643 Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V

Authors: Esther T. Akinlabi, Rasheedat M. Mahamood, Mukul Shukla, Sisa. Pityana

Abstract:

The study of effect of laser scanning speed on material efficiency in Ti6Al4V application is very important because unspent powder is not reusable because of high temperature oxygen pick-up and contamination. This study carried out an extensive study on the effect of scanning speed on material efficiency by varying the speed between 0.01 to 0.1m/sec. The samples are wire brushed and cleaned with acetone after each deposition to remove un-melted particles from the surface of the deposit. The substrate is weighed before and after deposition. A formula was developed to calculate the material efficiency and the scanning speed was compared with the powder efficiency obtained. The results are presented and discussed. The study revealed that the optimum scanning speed exists for this study at 0.01m/sec, above and below which the powder efficiency will drop

Keywords: Additive Manufacturing, Laser Metal Deposition Process, Material efficiency, Processing Parameter, Titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
6642 High Speed Rail vs. Other Factors Affecting the Tourism Market in Italy

Authors: F. Pagliara, F. Mauriello

Abstract:

The objective of this paper is to investigate the relationship between the increase of accessibility brought by high speed rail (HSR) systems and the tourism market in Italy. The impacts of HSR projects on tourism can be quantified in different ways. In this manuscript, an empirical analysis has been carried out with the aid of a dataset containing information both on tourism and transport for 99 Italian provinces during the 2006-2016 period. Panel data regression models have been considered, since they allow modelling a wide variety of correlation patterns. Results show that HSR has an impact on the choice of a given destination for Italian tourists while the presence of a second level hub mainly affects foreign tourists. Attraction variables are also significant for both categories and the variables concerning security, such as number of crimes registered in a given destination, have a negative impact on the choice of a destination.

Keywords: Tourists, overnights, high speed rail, attractions, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
6641 Current Mode Logic Circuits for 10-bit 5GHz High Speed Digital to Analog Converter

Authors: Zhenguo Vincent Chia, Sheung Yan Simon Ng, Minkyu Je

Abstract:

This paper presents CMOS Current Mode Logic (CML) circuits for a high speed Digital to Analog Converter (DAC) using standard CMOS 65nm process. The CML circuits have the propagation delay advantage over its conventional CMOS counterparts due to smaller output voltage swing and tunable bias current. The CML circuits proposed in this paper can achieve a maximum propagation delay of only 9.3ps, which can satisfy the stringent requirement for the 5 GHz high speed DAC application. Another advantage for CML circuits is its dynamic symmetry characteristic resulting in a reduction of an additional inverter. Simulation results show that the proposed CML circuits can operate from 1.08V to 1.3V with temperature ranging from -40 to +120°C.

Keywords: Conventional, Current Mode Logic, DAC, Decoder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5775
6640 New Design Methodologies for High Speed Low Power XOR-XNOR Circuits

Authors: Shiv Shankar Mishra, S. Wairya, R. K. Nagaria, S. Tiwari

Abstract:

New methodologies for XOR-XNOR circuits are proposed to improve the speed and power as these circuits are basic building blocks of many arithmetic circuits. This paper evaluates and compares the performance of various XOR-XNOR circuits. The performance of the XOR-XNOR circuits based on TSMC 0.18μm process models at all range of the supply voltage starting from 0.6V to 3.3V is evaluated by the comparison of the simulation results obtained from HSPICE. Simulation results reveal that the proposed circuit exhibit lower PDP and EDP, more power efficient and faster when compared with best available XOR-XNOR circuits in the literature.

Keywords: Exclusive-OR (XOR), Exclusive-NOR (XNOR), High speed, Low power, Arithmetic Circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2770
6639 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing

Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall

Abstract:

Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.

Keywords: Ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
6638 FPGA Based Parallel Architecture for the Computation of Third-Order Cross Moments

Authors: Syed Manzoor Qasim, Shuja Abbasi, Saleh Alshebeili, Bandar Almashary, Ateeq Ahmad Khan

Abstract:

Higher-order Statistics (HOS), also known as cumulants, cross moments and their frequency domain counterparts, known as poly spectra have emerged as a powerful signal processing tool for the synthesis and analysis of signals and systems. Algorithms used for the computation of cross moments are computationally intensive and require high computational speed for real-time applications. For efficiency and high speed, it is often advantageous to realize computation intensive algorithms in hardware. A promising solution that combines high flexibility together with the speed of a traditional hardware is Field Programmable Gate Array (FPGA). In this paper, we present FPGA-based parallel architecture for the computation of third-order cross moments. The proposed design is coded in Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) and functionally verified by implementing it on Xilinx Spartan-3 XC3S2000FG900-4 FPGA. Implementation results are presented and it shows that the proposed design can operate at a maximum frequency of 86.618 MHz.

Keywords: Cross moments, Cumulants, FPGA, Hardware Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
6637 An Investigation on Designing and Enhancing the Performance of H-Darrieus Wind Turbine of 10 kW at the Medium Range of Wind Speed in Vietnam

Authors: Ich Long Ngo, Dinh Tai Dang, Ngoc Tu Nguyen, Minh Duc Nguyen

Abstract:

This paper describes an investigation on designing and enhancing the performance of H-Darrieus Wind Turbine (HDWT) of 10 kW at the medium wind speed. The aerodynamic characteristics of this turbine were investigated by both theoretical and numerical approaches. The optimal design procedure was first proposed to enhance the power coefficient under various effects, such as airfoil type, number of blades, solidity, aspect ratio, and tip speed ratio. As a result, the overall design of the 10 kW HDWT was well achieved, and the power characteristic of this turbine was found by numerical approach. Additionally, the maximum power coefficient predicted is up to 0.41 at the tip speed ratio of 3.7 and wind speed of 8 m/s. Particularly, a generalized correlation of power coefficient with tip speed ratio and wind speed is first proposed. These results obtained are very useful for enhancing the performance of the HDWTs placed in a country with high wind power potential like Vietnam.

Keywords: Computational Fluid Dynamics, double multiple stream tube, H-Darrieus wind turbine, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77
6636 Real-Time Defects Detection Algorithm for High-Speed Steel Bar in Coil

Authors: Se Ho Choi, Jong Pil Yun, Boyeul Seo, YoungSu Park, Sang Woo Kim

Abstract:

This paper presents a real-time defect detection algorithm for high-speed steel bar in coil. Because the target speed is very high, proposed algorithm should process quickly the large volumes of image for real-time processing. Therefore, defect detection algorithm should satisfy two conflicting requirements of reducing the processing time and improving the efficiency of defect detection. To enhance performance of detection, edge preserving method is suggested for noise reduction of target image. Finally, experiment results show that the proposed algorithm guarantees the condition of the real-time processing and accuracy of detection.

Keywords: Defect detection, edge preserving filter, real-time image processing, surface inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3239
6635 Object Speed Estimation by using Fuzzy Set

Authors: Hossein Pazhoumand-Dar, Amir Mohsen Toliyat Abolhassani, Ehsan Saeedi

Abstract:

Speed estimation is one of the important and practical tasks in machine vision, Robotic and Mechatronic. the availability of high quality and inexpensive video cameras, and the increasing need for automated video analysis has generated a great deal of interest in machine vision algorithms. Numerous approaches for speed estimation have been proposed. So classification and survey of the proposed methods can be very useful. The goal of this paper is first to review and verify these methods. Then we will propose a novel algorithm to estimate the speed of moving object by using fuzzy concept. There is a direct relation between motion blur parameters and object speed. In our new approach we will use Radon transform to find direction of blurred image, and Fuzzy sets to estimate motion blur length. The most benefit of this algorithm is its robustness and precision in noisy images. Our method was tested on many images with different range of SNR and is satisfiable.

Keywords: Blur Analysis, Fuzzy sets, Speed estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
6634 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation

Authors: Christhu Raj M. R., Rajeev Sukumaran

Abstract:

Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.

Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
6633 Design and Analysis of a Low Power High Speed 1 Bit Full Adder Cell Based On TSPC Logic with Multi-Threshold CMOS

Authors: Ankit Mitra

Abstract:

An adder is one of the most integral component of a digital system like a digital signal processor or a microprocessor. Being an extremely computationally intensive part of a system, the optimization for speed and power consumption of the adder is of prime importance. In this paper we have designed a 1 bit full adder cell based on dynamic TSPC logic to achieve high speed operation. A high threshold voltage sleep transistor is used to reduce the static power dissipation in standby mode. The circuit is designed and simulated in TSPICE using TSMC 180nm CMOS process. Average power consumption, delay and power-delay product is measured which showed considerable improvement in performance over the existing full adder designs.

Keywords: CMOS, TSPC, MTCMOS, ALU, Clock gating, power gating, pipelining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3028
6632 Design and Analysis of Low-Power, High Speed and Area Efficient 2-Bit Digital Magnitude Comparator in 90nm CMOS Technology Using Gate Diffusion Input

Authors: Fasil Endalamaw

Abstract:

Digital magnitude comparators based on Gate Diffusion Input (GDI) implementation technique are high speed and area-efficient, and they consume less power as compared to other implementation techniques. However, they are less efficient for some logic gates and have no full voltage swing. In this paper, we made a performance comparison between the GDI implementation technique and other implementation methods, such as Static CMOS, Pass Transistor Logic (PTL), and Transmission Gate (TG) in 90 nm, 120 nm, and 180 nm CMOS technologies using BSIM4 MOS model. We proposed a methodology (hybrid implementation) of implementing digital magnitude comparators which significantly improved the power, speed, area, and voltage swing requirements. Simulation results revealed that the hybrid implementation of digital magnitude comparators show a 10.84% (power dissipation), 41.6% (propagation delay), 47.95% (power-delay product (PDP)) improvement compared to the usual GDI implementation method. We used Microwind & Dsch Version 3.5 as well as the Tanner EDA 16.0 tools for simulation purposes.

Keywords: Efficient, gate diffusion input, high speed, low power, CMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374
6631 Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor

Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal

Abstract:

In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed.

Keywords: Wound rotor induction motor, MATLAB/Simulink, rotor resistance method, slip power recovery method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
6630 High-Speed High-Gain CMOS OTA for SC Applications

Authors: M.Yousefi, A.Vatanjou, F.Nazeri

Abstract:

A fast settling multipath CMOS OTA for high speed switched capacitor applications is presented here. With the basic topology similar to folded-cascode, bandwidth and DC gain of the OTA are enhanced by adding extra paths for signal from input to output. Designed circuit is simulated with HSPICE using level 49 parameters (BSIM 3v3) in 0.35mm standard CMOS technology. DC gain achieved is 56.7dB and Unity Gain Bandwidth (UGB) obtained is 1.15GHz. These results confirm that adding extra paths for signal can improve DC gain and UGB of folded-cascode significantly.

Keywords: OTA (Operational Transconductance Amplifier), DC gain, Unity Gain Bandwidth (UGBW)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3541
6629 High Speed Video Transmission for Telemedicine using ATM Technology

Authors: J. P. Dubois, H. M. Chiu

Abstract:

In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.

Keywords: ATM, multiplexing, queueing, telemedicine, VBR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
6628 The Suitability of GPS Receivers Update Rates for Navigation Applications

Authors: Ahmad Abbas Al-Ameen Salih, Nur Liyana Afiqah Che Ahmad Zaini, Amzari Zhahir

Abstract:

Navigation is the processes of monitoring and controlling the movement of an object from one place to another. Currently, Global Positioning System (GPS) is the main navigation system used all over the world for navigation applications. GPS receiver receives signals from at least three satellites to locate and display itself. Displayed positioning information is updated continuously. Update rate is the number of times per second that a display is illuminated. The speed of update is governed by receiver update rate. A higher update rate decreases display lag time and improves distance measurements and tracking especially when moving on a curvy route. The majority of GPS receivers used nowadays are updated every second continuously. This period is considered reasonable for some applications while it is long relatively for high speed applications. In this paper, the suitability and feasibility of GPS receiver with different update rates will be evaluated for various applications according to the level of speed and update rate needed for particular applications.

Keywords: Navigation, Global Positioning System (GPS), GPS receiver, Update rate, Refresh rate, Satellite navigation, High speed GPS receiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7637
6627 High Specific Speed in Circulating Water Pump Can Cause Cavitation, Noise and Vibration

Authors: Chandra Gupt Porwal

Abstract:

Excessive vibration means increased wear, increased repair efforts, bad product selection & quality and high energy consumption. This may be sometimes experienced by cavitation or suction/discharge recirculation which could occur only when net positive suction head available NPSHA drops below the net positive suction head required NPSHR. Cavitation can cause axial surging, if it is excessive, will damage mechanical seals, bearings, possibly other pump components frequently, and shorten the life of the impeller. Efforts have been made to explain Suction Energy (SE), Specific Speed (Ns), Suction Specific Speed (Nss), NPSHA, NPSHR & their significance, possible reasons of cavitation /internal recirculation, its diagnostics and remedial measures to arrest and prevent cavitation in this paper. A case study is presented by the author highlighting that the root cause of unwanted noise and vibration is due to cavitation, caused by high specific speeds or inadequate net- positive suction head available which results in damages to material surfaces of impeller & suction bells and degradation of machine performance, its capacity and efficiency too. Author strongly recommends revisiting the technical specifications of CW pumps to provide sufficient NPSH margin ratios >1.5, for future projects and Nss be limited to 8500 - 9000 for cavitation free operation.

Keywords: Best efficiency point (BEP), Net positive suction head NPSHA, NPSHR, Specific Speed NS, Suction Specific Speed Nss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4967
6626 An Efficient Implementation of High Speed Vedic Multiplier Using Compressors for Image Processing Applications

Authors: Shobha Sharma, Amita Dev, Akanksha Kant

Abstract:

Digital signal processor, image signal processor and FIR filters have multipliers as an important part of their design. On the basis of Vedic mathematics, Vedic multipliers have come out to be very fast multipliers. One of the image processing applications is edge detection. This research presents a small area and high speed 8 bit Vedic multiplier system comprising of compressor based adders. This results in faster edge detection. This architecture is tested on Xilinx vertex 4 FPGA board and simulations were carried out using the Xilinx synthesis tool. Comparisons are made and this system is found to be smaller in area with high speed (the lesser propagation delay). This compressor based Vedic multiplier is 1.1 times speedier than a typical Vedic multiplier. Also, this Vedic Multiplier is 2 times speedier than a ‘simple’ multiplier.

Keywords: Detection of edges, Vedic multiplier, image processing, Urdhva Tiryakbhyam sutra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
6625 A Low Power and High-Speed Conditional-Precharge Sense Amplifier Based Flip-Flop Using Single Ended Latch

Authors: Guo-Ming Sung, Naga Raju Naik R.

Abstract:

Paper presents a low power, high speed, sense-amplifier based flip-flop (SAFF). The flip-flop’s power con-sumption and delay are greatly reduced by employing a new conditionally precharge sense-amplifier stage and a single-ended latch stage. Glitch-free and contention-free latch operation is achieved by using a conditional cut-off strategy. The design uses fewer transistors, has a lower clock load, and has a simple structure, all of which contribute to a near-zero setup time. When compared to previous flip-flop structures proposed for similar input/output conditions, this design’s performance and overall PDP have improved. The post layout simulation of the circuit uses 2.91µW of power and has a delay of 65.82 ps. Overall, the power-delay product has seen some enhancements. Cadence Virtuoso Designing tool with CMOS 90nm technology are used for all designs.

Keywords: high-speed, low-power, flip-flop, sense-amplifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
6624 A Comparative Study of P-I, I-P, Fuzzy and Neuro-Fuzzy Controllers for Speed Control of DC Motor Drive

Authors: S.R. Khuntia, K.B. Mohanty, S. Panda, C. Ardil

Abstract:

This paper presents a comparative study of various controllers for the speed control of DC motor. The most commonly used controller for the speed control of dc motor is Proportional- Integral (P-I) controller. However, the P-I controller has some disadvantages such as: the high starting overshoot, sensitivity to controller gains and sluggish response due to sudden disturbance. So, the relatively new Integral-Proportional (I-P) controller is proposed to overcome the disadvantages of the P-I controller. Further, two Fuzzy logic based controllers namely; Fuzzy control and Neuro-fuzzy control are proposed and the performance these controllers are compared with both P-I and I-P controllers. Simulation results are presented and analyzed for all the controllers. It is observed that fuzzy logic based controllers give better responses than the traditional P-I as well as I-P controller for the speed control of dc motor drives.

Keywords: Proportional-Integral (P-I) controller, Integral- Proportional (I-P) controller, Fuzzy logic control, Neuro-fuzzy control, Speed control, DC Motor drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
6623 A 0.9 V, High-Speed, Low-Power Tunable Gain Current Mirror

Authors: Hassan Faraji Baghtash

Abstract:

A high-speed current mirror with low-power method of adjusting current gain is presented. The current mirror provides continuous gain adjustment; yet, its gain can simply be programmed digitally, as well. The structure features the ever interesting merits of linear-in-dB gain control scheme and low power/voltage operation. The performance of proposed structure is verified through the simulation in TSMC 0.18 µm CMOS Technology. The proposed tunable gain current mirror structure draws only 18 µW from 0.9 V power supply and can operate at high frequencies up to 550 MHz in the worst case condition of maximum gain setting.

Keywords: Current mirror, current mode, low power, low voltage, tunable circuit, variable current amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
6622 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads

Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar

Abstract:

This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.

Keywords: Kevlar, needle temperature, Nomex, sewing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
6621 3D Modeling of Temperature by Finite Element in Machining with Experimental Authorization

Authors: P. Mottaghizadeh, M. Bagheri

Abstract:

In the present paper, the three-dimensional temperature field of tool is determined during the machining and compared with experimental work on C45 workpiece using carbide cutting tool inserts. During the metal cutting operations, high temperature is generated in the tool cutting edge which influence on the rate of tool wear. Temperature is most important characteristic of machining processes; since many parameters such as cutting speed, surface quality and cutting forces depend on the temperature and high temperatures can cause high mechanical stresses which lead to early tool wear and reduce tool life. Therefore, considerable attention is paid to determine tool temperatures. The experiments are carried out for dry and orthogonal machining condition. The results show that the increase of tool temperature depends on depth of cut and especially cutting speed in high range of cutting conditions.

Keywords: Finite element method, Machining, Temperature measurement, Thermal fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
6620 The Study of Super Hydrophobic Surfaces Using High Speed Shadowgraphy

Authors: D. Jasikova, M. Kotek, V. Kopecky

Abstract:

The aim of this article is the measurement of the basic characteristic of superhydrophobic surfaces using high speed shadowgraphy. Here we describe the novel patented system for the industrial production of superhydrophobic surfaces. These surfaces were investigated with two optically based measurement methods: impinging drop and inclined wall. The results of the visualization and analysis help to state the suitable sample with superhydrophobic properties for mathematic simulation.

Keywords: Antipearl effect, contact angle, hydrophobic, impinging drop, inclined wall, measurement, plasma, shadowgraphy, superhydrophobic surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
6619 Wind Load Characteristics in Libya

Authors: Mohammed B. Abohedma, Milad M. Alshebani

Abstract:

Recent trends in building constructions in Libya are more toward tall (high-rise) building projects. As a consequence, a better estimation of the lateral loading in the design process is becoming the focal of a safe and cost effective building industry. Byin- large, Libya is not considered a potential earthquake prone zone, making wind is the dominant design lateral loads. Current design practice in the country estimates wind speeds on a mere random bases by considering certain factor of safety to the chosen wind speed. Therefore, a need for a more accurate estimation of wind speeds in Libya was the motivation behind this study. Records of wind speed data were collected from 22 metrological stations in Libya, and were statistically analysed. The analysis of more than four decades of wind speed records suggests that the country can be divided into four zones of distinct wind speeds. A computer “survey" program was manipulated to draw design wind speeds contour map for the state of Libya. The paper presents the statistical analysis of Libya-s recorded wind speed data and proposes design wind speed values for a 50-year return period that covers the entire country.

Keywords: Ccontour map, return period, wind speed, and zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3603
6618 Induction Motor Speed Control Using Fuzzy Logic Controller

Authors: V. Chitra, R. S. Prabhakar

Abstract:

Because of the low maintenance and robustness induction motors have many applications in the industries. The speed control of induction motor is more important to achieve maximum torque and efficiency. Various speed control techniques like, Direct Torque Control, Sensorless Vector Control and Field Oriented Control are discussed in this paper. Soft computing technique – Fuzzy logic is applied in this paper for the speed control of induction motor to achieve maximum torque with minimum loss. The fuzzy logic controller is implemented using the Field Oriented Control technique as it provides better control of motor torque with high dynamic performance. The motor model is designed and membership functions are chosen according to the parameters of the motor model. The simulated design is tested using various tool boxes in MATLAB. The result concludes that the efficiency and reliability of the proposed speed controller is good.

Keywords: Induction motor, Field Oriented Control, Fuzzy logic controller, Maximum torque, Membership function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3154
6617 Modelling of a Direct Drive Industrial Robot

Authors: C. Perez, O. Reinoso, N. Garcia, J. M. Sabater, L. Gracia

Abstract:

For high-speed control of robots, a good knowledge of system modelling is necessary to obtain the desired bandwidth. In this paper, we present a cartesian robot with a pan/tilt unit in end-effector (5 dof). This robot is implemented with powerful direct drive AC induction machines. The dynamic model, parameter identification and model validation of the robot are studied (including actuators). This work considers the cartesian robot coupled and non linear (contrary to normal considerations for this type of robots). The mechanical and control architecture proposed in this paper is efficient for industrial and research application in which high speed, well known model and very high accuracy are required.

Keywords: Robot modelling, parameter identification and validation, AC servo-motors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
6616 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data

Authors: Ayudhia P. Gusti, Semin

Abstract:

It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.

Keywords: Maritime transportation, reducing fuel, shipping log data, speed optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
6615 Automatic Inspection of Percussion Caps by Means of Combined 2D and 3D Machine Vision Techniques

Authors: A. Tellaeche, R. Arana, I.Maurtua

Abstract:

The exhaustive quality control is becoming more and more important when commercializing competitive products in the world's globalized market. Taken this affirmation as an undeniable truth, it becomes critical in certain sector markets that need to offer the highest restrictions in quality terms. One of these examples is the percussion cap mass production, a critical element assembled in firearm ammunition. These elements, built in great quantities at a very high speed, must achieve a minimum tolerance deviation in their fabrication, due to their vital importance in firing the piece of ammunition where they are built in. This paper outlines a machine vision development for the 100% inspection of percussion caps obtaining data from 2D and 3D simultaneous images. The acquisition speed and precision of these images from a metallic reflective piece as a percussion cap, the accuracy of the measures taken from these images and the multiple fabrication errors detected make the main findings of this work.

Keywords: critical tolerance, high speed decision makingsimultaneous 2D/3D machine vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491