Modelling of a Direct Drive Industrial Robot
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Modelling of a Direct Drive Industrial Robot

Authors: C. Perez, O. Reinoso, N. Garcia, J. M. Sabater, L. Gracia

Abstract:

For high-speed control of robots, a good knowledge of system modelling is necessary to obtain the desired bandwidth. In this paper, we present a cartesian robot with a pan/tilt unit in end-effector (5 dof). This robot is implemented with powerful direct drive AC induction machines. The dynamic model, parameter identification and model validation of the robot are studied (including actuators). This work considers the cartesian robot coupled and non linear (contrary to normal considerations for this type of robots). The mechanical and control architecture proposed in this paper is efficient for industrial and research application in which high speed, well known model and very high accuracy are required.

Keywords: Robot modelling, parameter identification and validation, AC servo-motors.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1330781

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568

References:


[1] R.K. Ursem, P. Vadstrup, Parameter identification of induction motors using differential evolution. Evolutionary Computation, 2003. CEC -03. 8-12 Dec. 2003 Volume: 2, page(s): 790- 796 Vol.2 ISBN: 0-7803-7804-0
[2] Tobias Ortmaier, Gerd Hirzinger, Cartesian control of robots with working-position dependent dynamics, 6th International IFAC Symposium on Robot Control - Syroco 2000 Sept. 21 - 23; Vienna - Austria
[3] Sciavicco, L. And B. Siciliano, Modeling and control of robot manipulators (The Mc-Graw Hill Companies, 1996). ISBN: 1-85233-221-2
[4] Arthur G. Erdman, George N. Sandor, Sridhar Kota, Mechanism Design: Analysis and Synthesis (Prentice Hall 1996). ISBN: 0130408727
[5] Erik Wernholt, On multivariable and nonlinear identification of industrial robots (Linkoping Studies on Science and Technology, Thesis n. 1131).
[6] L. Gracia and C. P'erez, Modelado de Sistemas Din'amicos. Aplicaciones (Editorial ECU 2005). ISBN: 84-8454-422-2
[7] B.H. Rocha; M. Madrigal. An'alisis del Comportamiento en Controladores de Velocidad Variable Durante Depresiones de Voltaje. Revista IEEE Am'erica Latina. Volume:3, Issue:5, Date:Dec.2005.
[8] C. P'erez, N. Garc'─▒a, O. Reinoso, J. M. Azor'─▒n and R. Morales. Design, Modeling and Identification of a Cartesian Robot for Direct Visual Servoing Applications. VIIP 2006. Palma de Mallorca, Spain.
[9] R.D. Lorentz. Advanced Flux & Torque Control Methods for Field Oriented Induction Motor Drives. Univ. of Wisconsin-Madison, Course Notes.
[10] R.W. De Doncker, D.W. Novotny. The Universal Field Oriented Controller. Conf. Rec. IEEE-IAS 88, Oct. 1988, pp. 450-456
[11] D. Telford, M. W. Dunnigan, B. W. Williams. On-Line Identification of Induction Machine Electrical Prameters for Vector Control Loop Tuning. IEEE Transaction on Industrial Electronics, vol. 50, No. 2, August 2003
[12] A.B. Proca, A. Keyhani. Identification of variable frequency induction motor models from operating data. IEEE Transactions on Energy Conversion, vol. 17, No. 1, March 2002