Search results for: Sisa. Pityana
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Sisa. Pityana

3 Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V

Authors: Esther T. Akinlabi, Rasheedat M. Mahamood, Mukul Shukla, Sisa. Pityana

Abstract:

The study of effect of laser scanning speed on material efficiency in Ti6Al4V application is very important because unspent powder is not reusable because of high temperature oxygen pick-up and contamination. This study carried out an extensive study on the effect of scanning speed on material efficiency by varying the speed between 0.01 to 0.1m/sec. The samples are wire brushed and cleaned with acetone after each deposition to remove un-melted particles from the surface of the deposit. The substrate is weighed before and after deposition. A formula was developed to calculate the material efficiency and the scanning speed was compared with the powder efficiency obtained. The results are presented and discussed. The study revealed that the optimum scanning speed exists for this study at 0.01m/sec, above and below which the powder efficiency will drop

Keywords: Additive Manufacturing, Laser Metal Deposition Process, Material efficiency, Processing Parameter, Titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
2 Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V

Authors: Mukul Shukla, Rasheedat M. Mahamood, Esther T. Akinlabi, Sisa. Pityana

Abstract:

Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive manufacturing techniques, the underlying physics of the LMD process is yet to be fully understood probably because of high interaction between the processing parameters and studying many parameters at the same time makes it further complex to understand. In this study, the effect of laser power and powder flow rate on physical properties (deposition height and deposition width), metallurgical property (microstructure) and mechanical (microhardness) properties on laser deposited most widely used aerospace alloy are studied. Also, because the Ti6Al4V is very expensive, and LMD is capable of reducing buy-to-fly ratio of aerospace parts, the material utilization efficiency is also studied. Four sets of experiments were performed and repeated to establish repeatability using laser power of 1.8 kW and 3.0 kW, powder flow rate of 2.88 g/min and 5.67 g/min, and keeping the gas flow rate and scanning speed constant at 2 l/min and 0.005 m/s respectively. The deposition height / width are found to increase with increase in laser power and increase in powder flow rate. The material utilization is favoured by higher power while higher powder flow rate reduces material utilization. The results are presented and fully discussed.

Keywords: Laser Metal Deposition, Material Efficiency, Microstructure, Ti6Al4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3568
1 Experimental Film Class: Watbangkapom School, Samut Songkhram

Authors: Areerut J.

Abstract:

Experimental Film Class Project is supported by the Institute for Research and Development at Suan Sunandha Rajabhat University. This project is purported to provide academic and professional services to improve the quality standards of the community and locals in accordance with the mission of the university, which is to improve and expand knowledge for the community and to develop and transfer such knowledge and professions to the next generation. Eventually, it leads to sustainable development because the development of human resources is deemed as the key for sustainable development. Moreover, the Experimental Film Class is an integral part of the teaching of film production at Suan Sunandha International School of Art (SISA). By means of giving opportunities to students for participation in projects by sharing experience, skill and knowledge and participation in field activities, it helps students in the film production major to enhance their abilities and potentials as preparation for their readiness in the marketplace. Additionally, in this class, we provide basic film knowledge, screenwriting techniques, editing and subtitles including uploading videos on social media such as YouTube and Facebook for the participant students.

Keywords: Experimental Film Class, Watbangkapom School, Participant students, Basic of film production, Film Workshop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969