
Modelling of a Direct Drive Industrial Robot
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Abstract— For high-speed control of robots, a good knowledge of
system modelling is necessary to obtain the desired bandwidth. In this
paper, we present a cartesian robot with a pan/tilt unit in end-effector
(5 dof). This robot is implemented with powerful direct drive AC
induction machines. The dynamic model, parameter identification and
model validation of the robot are studied (including actuators). This
work considers the cartesian robot coupled and non linear (contrary
to normal considerations for this type of robots). The mechanical and
control architecture proposed in this paper is efficient for industrial
and research application in which high speed, well known model and
very high accuracy are required.

Keywords−Robot   modelling,    parameter  identification  and
validation, AC servo-motors.

I. INTRODUCTION

F IELD oriented (or vector) control is the most popular
alternating current (AC) machine control method and is

widely used in high-performance industrial applications of
electric drives [9][10]. In the case of an induction machine,
rotor flux oriented (RFO) -see [1]- control requires an accurate
value of at least some of the motor parameters in order to
yield robust control [11]. The parameters which are required
depends on the applied RFO control scheme.

Induction motor parameters change with temperature, fre-
quency, and saturation [12]. The consequence of any mismatch
between the parameter values used in the controller and those
in the motor is that the actual rotor flux position does not coin-
cide with the position assumed by the controller. This leads to
a loss of decoupling flux and torque control. Performance of
the drive therefore deteriorates from that desired. In order to
avoid such a situation, it is necessary to provide the controller
with accurate induction motor parameter values [1].

These AC machines are the actuators of a cartesian robot
designed and manufactured for this work. This paper presents
too (see section III-C) the model of a high-speed cartesian
robot [3][4]. The modelling strategy take into account the
robot dynamics necessary to increase the bandwidth of the
servo loop, in other words, as a high speed robot we require
the best possible model. We have obtained a very good
model and identification of the designed robot. Obviously this
paper presents a non-linear [5] and coupled model: Non-linear
because discontinuous functions and inter-variable products
appears in system modeling. (Equations: 14, 15, 16, 17, 20, 21,
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22, 23, 26, 27, 28 and 29 are Non-Linear. Equations: 30, 31
and 32 are Quasi-Linear and finally equations: 12, 13, 18, 19,
24 and 25 are linear). Coupled because the acceleration in an
axis modify the friction values in the others, so, the behavior
of an axis depends of what the others are doing (This effect
is modelled by equations: 14, 16, 20, 22, 26 and 28).

After modelling, robot identification is carried out and both
are validated by several simulations and real experiments.
Once we have the robot model, we can design a non-linear
regulator to control the robot [2].

The paper is structured as follows: Section I introduces the
thematic. Section II presents the Robot description; structure,
characteristics, drivers and robot controller. In section III, we
can find the robot modeling: sub-system equations, relation-
ship between variables and a complete description of them.
Section IV presents the parameter identification. The main
contribution of this paper is the validation of this work and
considerations done. In section V we present the high quality
of the model and identification. Conclusions are presented in
section VI and finally we can find the references.

II. ROBOT DESCRIPTION

The mechanical structure design is shown in [8] and the
characteristics are: 1695 mm height, 2311 mm length and 1400
mm (see figure 1). The robot is moved by three AC servo-
motors (synchronous) manufactured by SIEMENS (1FK6 se-
ries) and with the following characteristics: for ξ and ψ axis:
Torque at ω=0: 16 Nm, Nominal torque: 10.5 Nm. For ζ
axe: Torque at ω=0: 11 Nm, Nominal torque: 6 Nm. dSPACE
control card is used to implement the control algorythms (see
figure 1 for mechanical and control architecture and see figures
2 and 3 for robot shape). To save data from each experiment,
we have used RAM memory available in power converter
transferring it to a PC via Profibus DP.

III. ROBOT MODELLING

    A. Model of the Induction Motor

Unfortunately, in the real world we can not find constant
parameters or linear relationships. In real motors, the iron is
saturated, which means that the main flux ψm is a function of
the scalar magnetization current im = |is + ir| .

Considering ψs and ψr as fluxes through the stator and the
rotor windings, we can establish the relation with ψm, ψ̇s, ψ̇r
and motor currents as:
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Fig. 1. Mechanical and control architecture (representation of the complete
robot)

ψs = Lsl · is + Lm · (is + ir) = Lsl · is + ψm (1)

ψr = Lrl · ir + Lm · (is + ir) = Lrl · ir + ψm (2)

ψ̇s = −Rs · is + us (3)

ψ̇r − j · ωr · ψr = −Rs · ir (4)

Parameter definition of the system can be found in Table I.
The currents can be calculated as a function of the stator,

the rotor and the main flux.

is =
1

Lsl
· (ψs − ψm) (5)

ir =
1

Lrl
· (ψr − ψm) (6)

Using equations from 1 to 6, the main flux ψm can be
expressed by ψs and ψr:

ψs = Lsl · is + Lm · (is + ir) (7)

ψr = Lrl · ir + Lm · (is + ir) (8)

Isolating ψm, gives the explicit expression of the main flux:

Fig. 2. Robot obtained. Photo 1. (Structure, SIEMENS AC induction
machines and control PC with DSPACE card)

Fig. 3. Robot obtained. Photo 2. (Structure, SIEMENS AC induction
machines and control SIEMENS-MASTERDRIVE drivers)

ψm =

(
1

Lsl
· ψs −

1

Lrl
· ψr

)
(

1

Lm(im)
+

1

Lsl
+

1

Lrl

) (9)

In expression 9, the inductance Lm is a function of the
magnetization current im, which can be calculated from the
actual motor currents.

im =
√

(isd + ird)2 + (isq + irq)2 (10)

The varying inductance is determined by the magnetization
current according to equation 11, which has shown to be a
good approximation in practice. Lmo is the inductance when
the iron in the motor is not saturated and imo is the current
at which saturation begins. Finally, α is a factor giving the
decaying curve shape of Lm at high currents.

Lm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lmo im ≤ imo

Lmo

1 + α · Lmo · im ·

(
1

imo
−

1

im

)2
im > imo (11)
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Fig. 4. Induction motor controller (rectifier, smoothing and inverter controlled
by PWM. All parts are included in 1FK6 drivers)

Fig. 5. Diagram of the V/Hz controller (control scheme based in steady state
motor model)

The differential equation governing the dynamic behavior of
the motor is given by equations 3 and 4, in which ψm is given
in an implicit manner given by the expressions 5, 6, 9, 10 and
11. The value of ψm cannot be explicitly calculated for given
values of ψs and ψr, but has to be approximated iteratively by
a fixpoint calculation. The steps are first to assume a certain
value for Lm and insert this into 9 to calculate ψm. Then,
calculate 5 and 6 to determine is and ir. Next, calculate the
scalar magnetization current im. Finally, a new value of Lm
can be calculated from the lower branch of equation 11. The
exact value of ψm has been reached if this value is equal to
the value at the beginning of the iteration cycle.
This section has been developed using the information ex-
tracted from [1] and is not our work. We have applied
procedures presented in [1].

    B. Converter and Controller Model

The main function of the converter is transform power
supply to AC current with an specific value of frequency and
voltage to be applied to the motor. Process of transformation
can be divided in three steps: AC-DC conversion (rectifier),
filtering (smoothing) and DC-AC conversion (inverter). We can
see in figure 4 the schematic representation of induction motor
controller [7].

The V/Hz control scheme is based in steady state motor
model [7]. The control philosophy consists in maintaining
constant the magnetic flow. We can see in figure 5 the control
scheme for induction motors in our case.

   C. Mechanic Model

In figure 1, a  representation of the complete robot is shown.
Robot modelling expressions are divided in two groups: sub-
system equation and relationship between variables. These
expressions represents the complete behaviour of the robot
and the description of variables and constants can be found in
table I (really not all variables are considered in this table, for
example ωξ1 can not be found, but in equation 47, we can see
the relationship with an other variable considered in the same
table, Table I).

Considerations done for modelling are shown below:
- Belt transmission elasticity and shaft flexion are null;
- Inertia moments of pulleys are not considered;
- Tension of belts are not considered when no forces are
applied to them.
Sub-system equations:

Πμξ = Yξ · ω̇ξ1 + βρξ · ωξ1 + Π1 (12)

Π1 = κρ · (θξ1 − θξ2) (13)

Rρξ = κρ1 · |Φρξ1| + κρ2 · Φρζ1 (14)

Φ1 · ρΠ = aux(Π1, Rρξ, ωξ2) (15)

Rλξ = κλ1 · |Φρψ1| + κλ2 · |Φρζ2 +

+Φρζ3 + (μ2ψ + μ2ζ) · γ + Φ3| (16)

aux(−Φ1, Rλξ, ςξ) = (μψ + μ2ψ +

+μζ + μ2ζ + μ4) · ς̇ξ + βλξ · ςξ (17)

Πμψ = Yψ · ω̇ψ1 + βρψ · ωψ1 + Π2 (18)

Π2 = κρ · (θψ1 − θψ2) (19)

Rρψ = κρ3 · |Φρψ1| + κρ4 · Φρζ2 (20)

Φ2 · ρΠ = aux(Π2, Rρψ, ωψ2) (21)

Rλψ = κλ3 · (μζ + μ2ζ +

+μ4) · |ς̇ξ| + κλ4 · |Φρζ3 + μ2ζ · γ + Φ3| (22)

aux(Φ2, Rλψ, ςψ) =

= (μζ + μ2ζ + μ4) · ς̇ψ + βλψ · ςψ (23)

Πμζ = Yζ · ω̇ζ1 + βρζ · ωζ1 + Π3 (24)

Π3 = κρ · (θζ1 − θζ2) (25)

Rρζ = κρ5 · |Φρξ2| + κρ6 · Φρζ3 (26)

Φ3 · ρΠ = aux(Π3, Rρζ , ωζ2) (27)

Rλζ = κλ5 · μ4 · |ς̇ξ| + κλ6 · μ4 · |ς̇ψ| (28)

aux
(
(Φ3 − μ4 · γ), Rλζ , ςζ

)
=

= μ4 · ς̇ζ + βλζ · ςζ (29)

Φρζ3 = μζ · γ (30)

Φρζ2 = μψ · γ (31)

Φρζ1 = μξ · γ (32)

In expressions (15), (16), (23), (27) and (29) the aux

function is used. This function has three input variables (Π
is the force or torque result, R is the dry friction and ω is the
linear or angular velocity) and one output. We can find aux

function definition in expression (34).
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TABLE I

CONSTANT AND VARIABLE DEFINITIONS FOR SYSTEM MODELLING

(MOTOR AND ROBOT)

Lsl, Lrl stator and rotor inductance
is, ir rotor and stator currents
im magnetization currents
isd, ird, complex currents and
isq , irq actual motor currents
Rs stator resistance
us applied voltage
ωr motor speed

Πμξ,Πμψ ,Πμζ Torque generated by ξ, ψ and ζ
motors respectively

θξ1, θψ1, θζ1 Angle drawee by ξ, ψ and ζ
motors respectively

θξ2, θψ2, θζ2 Angle drawee by the pulley that
moves each axis

Π1,Π2,Π3 Torque applied to the angular
springs for ξ, ψ and ζ axis

Φρξ1,Φρψ1, Reaction forces to compensate
Φρζ4 the movement of the cart

supported by the structure robot
in ξ, ψ and ζ

Φρξ2,Φρξ3 Reaction horizontal forces
in ζ pulleys

Φρζ1,Φρζ2, Reaction vertical forces to
Φρζ3 compensate the gravity effect
Rρξ, Rρψ , Rρζ Dry friction for rotation joints
Rλξ, Rλψ , Rλζ Dry friction for linear joints
Φ1,Φ2,Φ3 Forces generated by transmission

belts and pulleys for ξ, ψ and ζ
axis respectively

ξ, ψ, ζ Robot coordinate system ξ, ψ, ζ
μξ, μψ , μζ Motor mass, cart, hooke joint

and pulleys for ξ, ψ and ζ
μ2ψ , μ2ζ Mass of the motor

for ψ and ζ axes
μ4 Mass of the vertical rod (ζ axis)
κρ Elastic constant of Hooke joints
Φρζ3,Φρζ4 Gravity effect and accelerations

generated by the ζ axis
βρ1, βρ2, βρ3 Rotational friction coefficients
βλ1, βλ2, βλ3 Translational friction coefficients
κρ1, . . . , κρ6 Dry friction coefficients

(rotational movements)
κλ1, . . . , κλ6 Dry friction coefficients

(lenear movements)
Φ1,Φ3,Φ2 Stress forces applied to the belts
ρΠ Pulley radius
γ Acceleration of gravity
Y1, Y2, Y3 Inertia moment

for ξ, ψ and ζ axis
Yξ, Yψ , Yζ Inertia moment

of ξ, ψ and ζ motors

ωζ2 = θ̇ζ2 (35)

Φρξ2 = Φ3 (36)

Φρξ3 = Φ3 (37)

Φρξ4 = Φ3 (38)

ωζ1 = θ̇ζ1 (39)

ςψ = ψ̇ (40)

ωψ2 = θ̇ψ2 (41)

ωψ1 = θ̇ψ1 (42)

ςξ = ξ̇ (43)

ωξ2 = θ̇ξ2 (44)

Φρξ1 = Φ1 (45)

Φρψ1 = Φ2 (46)

ωξ1 = θ̇ξ1 (47)

ςζ = ζ̇ (48)

ρΠ · θξ2 = ξ (49)

ρΠ · θψ2 = ψ (50)

ρΠ · θζ2 = ζ (51)

ρΠ · ωξ2 = ςξ (52)

ρΠ · ωψ2 = ςψ (53)

ρΠ · ωζ2 = ςζ (54)

ρΠ · ω̇ξ2 = ς̇ξ (55)

ρΠ · ω̇ψ2 = ς̇ψ (56)

ρΠ · ω̇ζ2 = ς̇ζ (57)

|
| =

{

 if 
 ≥ 0
−
 if 
 < 0

(33)

aux(Π, R, ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Π −R

if (ω > 0)or
(
(ω = 0)and(Π > R)

)
Π +R

if (ω < 0)or
(
(ω = 0)and(Π > −R)

)
0

if (ω = 0)and(|Π| < R)

(34)

We can find a compatible system equation in expressions
from (12) to (57) with three algebraical loops and without
structural singularities. We can identify expressions (14), (15),
(16), (17), (20), (21), (22), (23), (26), (27), (28) and (29) as
Non-Linear, expressions (30), (31) and (32) as Quasi-Linear
and expressions (12), (13), (18), (19), (24) and (25) as Linear.

Non-Linear equations are introduced by absolute value
function (see expression (33)) used to obtain the dry friction
value and by aux function (see expression (34)) used to
rotation and translation dynamic modelling. The problem in
this case is that the absolute value and aux functions are
discontinuous and consequently NO derivables, therefore, we
can not find a linear approximation.

This system is considered coupled because the acceleration
in an axis modify the friction values in the others, so, the
behaviour of an axis depends on what the others are doing
(This effect is modelled by expressions: (14), (16), (20), (22),
(26) and (28).
For more details about modelling process, we can find in [6]
an example of cartesian robot modelling.
Relationship between variables can be founded in expressions
form 35 to 57.

IV. PARAMETER IDENTIFICATION

There are a lot of parameters to identify in this system.
Some of them are obtained by mechanical characteristics (like
masses, inertia moments), others are obtained by simply ex-
periments (like linear frictions), manufacturer data or adjusted
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TABLE II

MOTOR PARAMETER IDENTIFICATION VALUES

ξ motor ψ motor ζ motor
Rs 3.181 3.02 2.76
Rr 2.55 2.61 1.66
Lsl 0.031 0.029 0.016
Lrl 0.061 0.058 0.046
Lmo 1.01 1.07 0.88
imo 1.11 9.66 7.33
α 0.50 0.55 0.42
J 0.019 0.018 0.012

TABLE III

ROBOT PARAMETER IDENTIFICATION VALUES

μξ, μψ , μζ = 65.32,36.15,12.75
Yξ, Yψ , Yζ = 0.316,0.169,0.054
μ2ψ , μ2ζ , μ4 = 0.324,0.152,0.846
κρ, ρΠ, γ = 0.01224,0.225,9.8

βρξ, βρψ , βρζ = 0.323,0.398,0.190
β1ξ, β1ψ , β1ζ = 0.368,0.267,0.124
βρξ, βρψ , βρζ = 0.248,0.356,0.127
βλξ, βλψ , βλζ = 0.357,0.159,0.258
κρ1, κρ2, κρ3 = 1.172,1.146,1.938
κρ4, κρ5, κρ6 = 1.143,1.112,1.287
κλ1, κλ2, κλ3 = 1.543,1.857,1.165
κλ4, κλ5, κλ6 = 1.745,1.254,1.098

empirically, but most of them are obtained using a sequential
least squares algorythm with a forgetting factor. This well
known algorythm has conditioning problems when the inputs
vary slowly but in our case it works properly. In [8] we can
find a description of how the identification is done.
After these experiments, we obtain the values shown in tables
II for the motors model and III for robot model.

V. EXPERIMENTAL RESULTS AND VALIDATION

In this section the results of several experiments are pre-
sented. One of the main parts of this work is the validation of
modelling and identification process. At figures shown, we can
see the high quality obtained in system modelling presented in
section III, in other words, the real robot behaviour modelled
in this paper is accurately modelled.

In figure 6 we can see the simulation and the real data for
ξ motor torque. To obtain this figure, a step of 30 rpm input

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−3

−2

−1

0

1

2

3

4

5

6

Time [s]

T
or

qu
e 

[N
m

]

Real
Model

Fig. 6. Motor torque response (ξ). (RED- response of the non-linear and
coupled model presented in this paper. BLUE- real response of the robot)

is applied (see figure 5) and the output (torque) is shown.
In figures 7, 8, 10 and 9, we can see the model and real

response for several signals. For all these experiments, we plot
the angular velocity of motors for a torque step input in the
model described in section III-C. In all these figures we can
see that the real response and the model response is quite
similar.

In figure 7 we can see probably the best response obtained
of all experiments done. In this figure, we can see that model
(non-linear) response is exactly the same as real response. In
figures like 8 and 10, we can see that model response is not
exactly the same as real response every time, but in general
terms is acceptable. Figures 9 and 10 show the experiments
for ζ axis. We can see two experiments for this axis because
they are the most complex to validate. The gravity affects the
equation system shown in section III-C. Figure 9 shows the
robot response for an up-moving end-effector and figure 10
shows the robot response for a down-moving. Model data of
figures from 6 to 10 (simulation results) are obtained using
DYMOLA/MODELICA but are plotted using MATLAB.

VI. CONCLUSION

We have presented the results and implications of our
study into robot modelling, identification and model validation.
In this work, we consider a complex model of the robot
that allows the increase in the bandwidth of the controller.
For slow or medium velocity and acceleration movements,
the consideration of decoupled and linear is acceptable but
for high acceleration/deceleration movements (remember that
motors are 16 Nm of max torque) this type of model is needed.

One of the main differences of an industrial robot compared
with lab robots is that motors are powerful, in section III-C, we
present a model of the induction motors (using [1]). With this
consideration, the system model is more realistic and includes
the actuator allowing a very good base to obtain a control law.

So, we present a non-linear and coupled model that satisfy
all specifications demanded in our case. We would like to
comment on the great similarity between the model obtained
in this work and real robot response.
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Fig. 7. Response of ξ for a step input. (RED- response of the non-linear and
coupled model presented in this paper. BLUE- real response of the robot)
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Fig. 8. Response of ψ for a step input. (RED- response of the non-linear
and coupled model presented in this paper. BLUE- real response of the robot)
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Fig. 9. Response of ζ for a step input. (RED- response of the non-linear and
coupled model presented in this paper. BLUE- real response of the robot)
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Fig. 10. Response of ζ for a step input. (RED- response of the non-linear
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