Search results for: temperature field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4767

Search results for: temperature field

2637 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: Exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
2636 Internet of Things Applications on Supply Chain Management

Authors: B. Cortés, A. Boza, D. Pérez, L. Cuenca

Abstract:

The Internet of Things (IoT) field has been applied in industries with different purposes. Sensing Enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the Internet. These fields have come into focus recently on the enterprises, and there is some evidence of the use and implications in supply chain management, while finding it as an interesting aspect to work on. This paper presents a revision and proposals of IoT applications in supply chain management.

Keywords: Internet of Things, Sensing Enterprises, Supply Chain Management, Industrial, Production Systems, Sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5424
2635 Conceptual Design of the TransAtlantic as a Research Platform for the Development of “Green” Aircraft Technologies

Authors: Victor Maldonado

Abstract:

Recent concerns of the growing impact of aviation on climate change has prompted the emergence of a field referred to as Sustainable or “Green” Aviation dedicated to mitigating the harmful impact of aviation related CO2 emissions and noise pollution on the environment. In the current paper, a unique “green” business jet aircraft called the TransAtlantic was designed (using analytical formulation common in conceptual design) in order to show the feasibility for transatlantic passenger air travel with an aircraft weighing less than 10,000 pounds takeoff weight. Such an advance in fuel efficiency will require development and integration of advanced and emerging aerospace technologies. The TransAtlantic design is intended to serve as a research platform for the development of technologies such as active flow control. Recent advances in the field of active flow control and how this technology can be integrated on a sub-scale flight demonstrator are discussed in this paper. Flow control is a technique to modify the behavior of coherent structures in wall-bounded flows (over aerodynamic surfaces such as wings and turbine nozzles) resulting in improved aerodynamic cruise and flight control efficiency. One of the key challenges to application in manned aircraft is development of a robust high-momentum actuator that can penetrate the boundary layer flowing over aerodynamic surfaces. These deficiencies may be overcome in the current development and testing of a novel electromagnetic synthetic jet actuator which replaces piezoelectric materials as the driving diaphragm. One of the overarching goals of the TranAtlantic research platform include fostering national and international collaboration to demonstrate (in numerical and experimental models) reduced CO2/ noise pollution via development and integration of technologies and methodologies in design optimization, fluid dynamics, structures/ composites, propulsion, and controls.

Keywords: Aircraft Design, Sustainable “Green” Aviation, Active Flow Control, Aerodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
2634 Characterization of the In0.53Ga0.47As n+nn+ Photodetectors

Authors: Fatima Zohra Mahi, Luca Varani

Abstract:

We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detective parameter for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed by considering the free carries fluctuations. The responsivity and the detection parameter are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.

Keywords: Responsivity, detection parameter, photo-detectors, continuity equation, current noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
2633 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.

Keywords: Electromagnetism, Maxwell's Equations, Anisotropic permittivity, Wave equation, Matrix Equation, Permittivity tensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
2632 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks

Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia

Abstract:

PH, temperature and time of extraction of each stage,  agitation speed and delay time between stages effect on efficiency of  zinc extraction from concentrate. In this research, efficiency of zinc  extraction was predicted as a function of mentioned variable by  artificial neural networks (ANN). ANN with different layer was  employed and the result show that the networks with 8 neurons in  hidden layer has good agreement with experimental data.

 

Keywords: Zinc extraction, Efficiency, Neural networks, Operating condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
2631 Effects of ECCS on the Cold-Leg Fluid Temperature during SGTR Accidents

Authors: Tadashi Watanabe

Abstract:

The LSTF experiment simulating the SGTR accident at the Mihama Unit-2 reactor is analyzed using the RELAP5/MOD3.3 code. In the accident, and thus in the experiment, the ECC water was injected not only into the cold legs but into the upper plenum. Overall transients during the experiment such as pressures and fluid temperatures are simulated well by the code. The cold-leg fluid temperatures are shown to decrease if the upper plenum injection system is connected to the cold leg. It is found that the cold-leg fluid temperatures also decrease if the upper-plenum injection is not used and the cold-leg injection alone is actuated.

Keywords: SGTR, LSTF, RELAP5, ECCS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
2630 Carbon Dioxide Removal from Flue Gas Using Amine-Based Hybrid Solvent Absorption

Authors: Supitcha Rinprasertmeechai, Sumaeth Chavadej, Pramoch Rangsunvigit, Santi Kulprathipanja

Abstract:

This study was to investigate the performance of hybrid solvents blended between primary, secondary, or tertiary amines and piperazine (PZ) for CO2 removal from flue gas in terms of CO2 absorption capacity and regeneration efficiency at 90 oC. Alkanolamines used in this work were monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA). The CO2 absorption was experimentally examined under atmospheric pressure and room temperature. The results show that MEA blend with PZ provided the maximum CO2 absorption capacity of 0.50 mol CO2/mol amine while TEA provided the minimum CO2 absorption capacity of 0.30 mol CO2/mol amine. TEA was easier to regenerate for both first cycle and second cycle with less loss of absorption capacity. The regeneration efficiency of TEA was 95.09 and 92.89 %, for the first and second generation cycles, respectively.

Keywords: CO2 absorption capacity, regeneration efficiency, CO2 removal, flue gas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577
2629 Used Frying Oil for Biodiesel Production Over Kaolinite as Catalyst

Authors: Jorge Ramírez-Ortiz, Jorge Medina-Valtierra, Merced Martínez Rosales

Abstract:

Biodiesel production with used frying by transesterification reaction with methanol, using a commercial kaolinite thermally-activated solid acid catalyst was investigated. The surface area, the average pore diameter and pore volume of the kaolinite catalyst were 10 m2/g, 13.0 nm and 30 mm3/g, respectively. The optimal conditions for the transesterification reaction were determined to be oil/methanol, in a molar ratio 1:31, temperature 160 ºC and catalyst concentration of 3% (w/w). The yield of fatty acids methyl esters (FAME) was 92.4% after 2 h of reaction. This method of preparation of biodiesel can be a positive alternative for utilizing used frying corn oil for feedstock of biodiesel combined with the inexpensive catalyst.

Keywords: Biodiesel, frying corn oil, kaolinite, transesterification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
2628 Resistive Switching Characteristics of Resistive Random Access Memory Devices after Furnace Annealing Processes

Authors: Chi-Yan Chu, Kai-Chi Chuang, Huang-Chung Cheng

Abstract:

In this study, the RRAM devices with the TiN/Ti/HfOx/TiN structure were fabricated, then the electrical characteristics of the devices without annealing and after 400 °C and 500 °C of the furnace annealing (FA) temperature processes were compared. The RRAM devices after the FA’s 400 °C showed the lower forming, set and reset voltages than the other devices without annealing. However, the RRAM devices after the FA’s 500 °C did not show any electrical characteristics because the TiN/Ti/HfOx/TiN device was oxidized, as shown in the XPS analysis. From these results, the RRAM devices after the FA’s 400 °C showed the best electrical characteristics.

Keywords: RRAM, furnace annealing, forming, set and reset voltages, XPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
2627 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
2626 Morphology and Magnetic Properties of Fe3O4 and Au@Fe3O4 Nanoparticles Synthesized by Pulsed Plasma in Liquid

Authors: Zhazgul Kelgenbaeva, Emil Omurzak, Saadat Sulaimankulova, Tsutomu Mashimo

Abstract:

Spherical shaped magnetite (Fe3O4) and Au@Fe3O4 nanoparticles were successfully synthesized from Fe electrodes immersed in water with CTAB surfactant and HAuCl4 solution using simple method-pulsed plasma in liquid, without the use of dopants or special conditions for stabilization. Vibrating sample magnetometer indicated ferromagnetic behavior of particles at room temperature with coercivity and saturation magnetization of (Hc=105 Oe, Ms=6.83 emu/g) for Fe3O4 and (Hc=175, Ms=3.56emu/g) for Au@Fe3O4 nanoparticles. Structure and morphology of nanoparticles were characterized by X-ray Diffraction analysis and HR-TEM measurements. The cytotoxicity of nanoparticles was indicated using a XTT assay to be very low (cell viability: 98-89% with Fe3O4 and 99-91% for Au@Fe3O4 NPs).

Keywords: Magnetite, Gold coated magnetite, Nanoparticles, Pulsed Plasma in Liquid, Cytotoxicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
2625 On the Construction of Lightweight Circulant Maximum Distance Separable Matrices

Authors: Qinyi Mei, Li-Ping Wang

Abstract:

MDS matrices are of great significance in the design of block ciphers and hash functions. In the present paper, we investigate the problem of constructing MDS matrices which are both lightweight and low-latency. We propose a new method of constructing lightweight MDS matrices using circulant matrices which can be implemented efficiently in hardware. Furthermore, we provide circulant MDS matrices with as few bit XOR operations as possible for the classical dimensions 4 × 4, 8 × 8 over the space of linear transformations over finite field F42 . In contrast to previous constructions of MDS matrices, our constructions have achieved fewer XORs.

Keywords: Linear diffusion layer, circulant matrix, lightweight, MDS matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
2624 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: Catalytic membrane, hydrogen, methane steam reforming, permeance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
2623 A Review on Concrete Structures in Fire

Authors: S. Iffat, B. Bose

Abstract:

Concrete as a construction material is versatile because it displays high degree of fire-resistance. Concrete’s inherent ability to combat one of the most devastating disaster that a structure can endure in its lifetime, can be attributed to its constituent materials which make it inert and have relatively poor thermal conductivity. However, concrete structures must be designed for fire effects. Structural components should be able to withstand dead and live loads without undergoing collapse. The properties of high-strength concrete must be weighed against concerns about its fire resistance and susceptibility to spalling at elevated temperatures. In this paper, the causes, effects and some remedy of deterioration in concrete due to fire hazard will be discussed. Some cost effective solutions to produce a fire resistant concrete will be conversed through this paper.

Keywords: Concrete, fire, spalling, temperature, compressive strength, density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
2622 Propane Dehydrogenation over Pt-Sn Supported on Magnesium Aluminate Material

Authors: Deepa Govindarajan, Debdut Roy

Abstract:

Pt-Sn catalysts have been prepared using magnesium aluminate as a support with two different Mg/Al ratio. The supports/catalysts have been characterized by N2-adsorption, XRD, and temperature programmed desorption of NH3 and thermogravimetry analysis (TGA). The catalysts have been evaluated at 595 0C for the propane dehydrogenation reaction at 0.5 barg pressure using a feed containing pure propane with steam to hydrocarbon ratio of 1 mol/mol and weight hourly space velocity (WHSV) 0.9 h-1. Chlorine quantification studies have been developed using Carbon-Hydrogen-Nitrogen-Sulphur (CHNS) analyzer. The dechlorinated catalyst with higher alumina content showed better performance (38-43% propane conversion, 91-94% propylene selectivity) in propane conversion and propylene selectivity than Pt-Sn-MG-AL-DC-1 (30-18% propane conversion, 83-90% propylene selectivity).

Keywords: Dehydrogenation, alumina, platinum-tin catalyst, dechlorination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
2621 Adsorption of Methylene Blue from Aqueous Solution on the Surface of Znapso-34 Nanoporous Material

Authors: B. Abbad, A. Lounis, Tassalit Djilali

Abstract:

The effects of equilibrium time, solution pH, and sorption temperature of cationic methylene blue (MB) adsorption on nanoporous metallosilicoaluminophosphate ZnAPSO-34 was studied using a batch equilibration method. UV–VIS spectroscopy was used to obtain the adsorption isotherms at 20° C. The optimum period for adsorption was 300 min. However, MB removal increased from 81,82 % to 94,81 %. The equilibrium adsorption data was analyzed by using Langmuir, Freundlich and Temkin isotherm models. Langmuir isotherm was found to be the better-fitting model and the process followed pseudo second–order kinetics. The results showed that ZnAPSO-34 could be employed as an effective material and could be an attractive alternative for the removal of dyes and colors from aqueous solutions.

Keywords: Adsorption, Dye, Metallosilicoaluminophosphate, Methylene Blue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3139
2620 Algebras over an Integral Domain and Immediate Neighbors

Authors: Shai Sarussi

Abstract:

Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. A characterization of the property of immediate neighbors in an Alexandroff topological space is given, in terms of closed and open subsets of appropriate subspaces. Moreover, two special subspaces of W are introduced, and a way in which their closed and open subsets induce W is presented.

Keywords: Algebras over integral domains, Alexandroff topology, immediate neighbors, integral domains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
2619 Application of Neural Network on the Loading of Copper onto Clinoptilolite

Authors: John Kabuba

Abstract:

The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ionexchange.

Keywords: Clinoptilolite, loading, modeling, Neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
2618 Modeling Studies for Electrocoagulation

Authors: A. Genç, R. Hacıoğlu, B. Bakırcı

Abstract:

Synthetic oily wastewaters were prepared from metal working fluids (MWF). Electrocoagulation experiments were performed under constant voltage application. The current, conductivity, pH, dissolved oxygen concentration and temperature were recorded on line at every 5 seconds during the experiments. Effects of applied voltage differences, electrode materials and distance between electrodes on removal efficiency have been investigated. According to the experimental results, the treatment of MWF wastewaters by iron electrodes rather than aluminum and stainless steel was much quicker; and the distance between electrodes should be less than 1cm. The electrocoagulation process was modeled by using block oriented approach and found out that it can be modeled as a single input and multiple output system. Modeling studies indicates that the electrocoagulation process has a nonlinear model structure.

Keywords: Electrocoagulation, oily wastewater, SIMO systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
2617 Production of Spherical Ag/ZnO Nanocomposite Particles for Photocatalytic Applications

Authors: K. B. Dermenci, B. Ebin, S.Gürmen

Abstract:

Noble metal participation in nanostructured semiconductor catalysts has drawn much interest because of their improved properties. Recently, it has been discussed by many researchers that Ag participation in TiO2, CuO, ZnO semiconductors showed improved photocatalytic and optical properties. In this research, Ag/ZnO nanocomposite particles were prepared by Ultrasonic Spray Pyrolysis(USP) Method. 0.1M silver and zinc nitrate aqueous solutions were used as precursor solutions. The Ag:Zn atomic ratio of the solution was selected 1:1. Experiments were taken place under constant air flow of 400 mL/min at 800°C furnace temperature. Particles were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS). The crystallite sizes of Ag and ZnO in composite particles are 24.6 nm, 19.7 nm respectively. Although, spherical nanocomposite particles are in a range of 300- 800 nm, these particles are formed by the aggregation of primary particles which are in a range of 20-60 nm.

Keywords: Ag/ZnO nanocatalysts, Nanotechnology, USP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2881
2616 Investigation of Main Operating Parameters Affecting Gas Turbine Efficiency and Gas Releases

Authors: Farhat Hajer, Khir Tahar, Ammar Ben Brahim

Abstract:

This work presents a study on the influence of the main operating variables on the gas turbine cycle. A numerical simulation of a gas turbine cycle is performed for a real net power of 100 MW. A calculation code is developed using EES software. The operating variables are taken in conformity with the local environmental conditions adopted by the Tunisian Society of Electricity and Gas. Results show that the increase of ambient temperature leads to an increase of Tpz and NOx emissions rate and a decrease of cycle efficiency and UHC emissions. The CO emissions decrease with the raise of residence time, while NOx emissions rate increases and UHC emissions rate decreases. Furthermore, both of cycle efficiency and NOx emissions increase with the increase of the pressure ratio.

Keywords: CO, efficiency, gas turbine, NOx, UHC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
2615 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: Analytics, Big Data in Education, Hadoop, Learning Analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4877
2614 Intrinsic Kinetics of Methanol Dehydration over Al2O3 Catalyst

Authors: Liang Zhang, Hai-Tao Zhang, W ei-Yong Ying, Ding-Ye Fang

Abstract:

Dehydration of methanol to dimethyl ether (DME) over a commercial Al2O3 catalyst was studied in an isothermal integral fixed bed reactor. The experiments were performed on the temperature interval 513-613 K, liquid hourly space velocity (LHSV) of 0.9-2.1h-1, pressures between 0.1 and 1.0 MPa. The effect of different operation conditions on the dehydration of methanol was investigated in a laboratory scale experiment. A new intrinsic kinetics equation based on the mechanism of Langmuir-Hinshelwood dissociation adsorption was developed for the dehydration reaction by fitting the expressions to the experimental data. An activation energy of 67.21 kJ/mol was obtained for the catalyst with the best performance. Statistic test showed that this new intrinsic kinetics equation was acceptable.

Keywords: catalyst, dimethyl ether, intrinsic kinetics, methanol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4657
2613 Protein Secondary Structure Prediction

Authors: Manpreet Singh, Parvinder Singh Sandhu, Reet Kamal Kaur

Abstract:

Protein structure determination and prediction has been a focal research subject in the field of bioinformatics due to the importance of protein structure in understanding the biological and chemical activities of organisms. The experimental methods used by biotechnologists to determine the structures of proteins demand sophisticated equipment and time. A host of computational methods are developed to predict the location of secondary structure elements in proteins for complementing or creating insights into experimental results. However, prediction accuracies of these methods rarely exceed 70%.

Keywords: Protein, Secondary Structure, Prediction, DNA, RNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
2612 A Unification and Relativistic Correction for Boltzmann’s Law

Authors: Lloyd G. Allred

Abstract:

The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann’s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein’s formula for energy (E=mc2), then a relativistic correction is not required.

Keywords: Cosmology, EMP, Euclidean, plasma physics, relativity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
2611 Structural, Optical and Ferroelectric Properties of BaTiO3 Sintered at Different Temperatures

Authors: Anurag Gaur, Neha Sharma

Abstract:

In this work, we have synthesized BaTiO3 via sol gel method by sintering at different temperatures (600, 700, 800, 900, 10000C) and studied their structural, optical and ferroelectric properties through X-ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal and cubic structure of BaTiO3. The Optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 10000C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 40 nm for the samples sintered at 600 to 10000C, respectively. Moreover, it has been observed that the ferroelectricity increases as we increase the sintering temperature.

Keywords: Nanostructures, Ferroelectricity, Sol-gel method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3750
2610 Thermal Characterization of Graphene Oxide-Epoxy Nanocomposites Produced by Aqueous Emulsion

Authors: H. A. Brandão Cordeiro, M. G. Bocardo, N. C. Penteado, V. T. de Moraes, S. M. Giampietri Lebrão, G. W. Lebrão

Abstract:

The present study desired to obtain a nanocomposite of epoxy resin reinforced with graphene oxide (OG), for aerospace application, produced by aqueous emulsion. It was obtained proof bodies with 0.00 wt%, 0.10 wt%, 0.25 wt% and 0.50 wt% in weight of nanoparticles, to check the influence of it in the final quality of the obtained product. The validation of the results was done by the application thermal characterization by differential scanning calorimetry (DSC). It was seen that the nanocomposite reinforced with 0.10 wt% of OG showed the best results, the average glass transition temperature, at 2 °C, compared to the pure resin.

Keywords: Aqueous emulsion, graphene, nanocomposites, thermal characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
2609 Generalized Exploratory Model of Human Category Learning

Authors: Toshihiko Matsuka

Abstract:

One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.

Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
2608 Carbon Nanotubes Synthesized Using Sugar Cane as a Percursor

Authors: Vanessa Romanovicz, Beatriz A. Berns, Stephen D. Carpenter, Deyse Carpenter

Abstract:

This article deals with the carbon nanotubes (CNT) synthesized from a novel precursor, sugar cane and Anodic Aluminum Oxide (AAO). The objective was to produce CNTs to be used as catalyst supports for Proton Exchange Membranes. The influence of temperature, inert gas flow rate and concentration of the precursor is presented. The CNTs prepared were characterized using TEM, XRD, Raman Spectroscopy, and the surface area determined by BET. The results show that it is possible to form CNT from sugar cane by pyrolysis and the CNTs are the type multi-walled carbon nanotubes. The MWCNTs are short and closed at the two ends with very small surface area of SBET= 3.691m,/g.

Keywords: Carbon nanotubes, sugar cane, fuel cell, catalyst support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291