Resistive Switching Characteristics of Resistive Random Access Memory Devices after Furnace Annealing Processes
Authors: Chi-Yan Chu, Kai-Chi Chuang, Huang-Chung Cheng
Abstract:
In this study, the RRAM devices with the TiN/Ti/HfOx/TiN structure were fabricated, then the electrical characteristics of the devices without annealing and after 400 °C and 500 °C of the furnace annealing (FA) temperature processes were compared. The RRAM devices after the FA’s 400 °C showed the lower forming, set and reset voltages than the other devices without annealing. However, the RRAM devices after the FA’s 500 °C did not show any electrical characteristics because the TiN/Ti/HfOx/TiN device was oxidized, as shown in the XPS analysis. From these results, the RRAM devices after the FA’s 400 °C showed the best electrical characteristics.
Keywords: RRAM, furnace annealing, forming, set and reset voltages, XPS.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1131703
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099References:
[1] H.-S. Philip Wong, Simone Raoux, SangBum Kim, “Phase Change Memory,” Proc. IEEE. 98, 2201-2227 (2010).
[2] Tehrani, S. et al., “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE (USA). 91, 703–714 (2003).
[3] Fox, G. R., Chu, F. & Davenport, T., “Current and future ferroelectric non-volatile memory technology,” J. Vac. Sci. Technol. B. 19, 1967–1971 (2001).
[4] Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, “Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM,” Adv. Mater. 24 (2012) 1844–1849.
[5] K. Kita, A. Eika, T. Nishimura, K. Nagashio, A. Toriumi, “Resistive switching behaviors of NiO bilayer films with different crystallinity layers,” ECS Trans. 28(210) 315-322.
[6] Li-Wei Feng, Chun-Yen Chang, Yao-Feng Chang, Ting-Chang Chang, Shin-Yuan Wang, Shih-Ching Chen, Chao-Cheng Lin, Shih-Cheng Chen, and Pei-Wei Chiang, “Improvement of resistance switching characteristics in a thin FeOx transition layer of TiN/SiO2 /FeOx /FePt structure by rapid annealing,” Appl. Phys. Lett. 96, 222108 (2010).
[7] Kuan-Chang Chang, Ting-Chang Chang, Tsung-Ming Tsai1, Rui Zhang, Ya-Chi Hung, Yong-En Syu, Yao-Feng Chang, Min-Chen Chen, Tian-Jian Chu, Hsin-Lu Chen, Chih-Hung Pan, Chih-Cheng Shih, Jin-Cheng Zheng and Simon M Sze, “Physical and chemical mechanisms in oxide-based resistance random access memory,” Nanoscale research letters 10, 1 (2015).
[8] Jun Yao, Lin Zhong, Douglas Natelson, and James M. Tour, “Etching-dependent reproducible memory switching in vertical SiO 2 structures,” Appl. Phys. Lett. 93, 253101 (2008).
[9] Gunuk Wang, Adam C. Lauchner, Jian Lin, Douglas Natelson, Krishna V. Palem, James M. Tour, “High-Performance and Low-Power Rewitable SiOx 1 kbit One Diode-One Resistor Crossbar Memory Array,” Adv. Mater. 25, 4789 (2013).
[10] Li-Wei Feng, Chun-Yen Chang, Yao-Feng Chang, Wei-Ren Chen, Shin-Yuan Wang, Pei-Wei Chiang, and Ting-Chang Chang, “A study of resistive switching effects on a thin FeOx transistion layer produced at the oxide/iron interface of TiN/SiO2/Fe-contented electrode structures”, Appl. Phys. Lett. 96, 052111 (2010).
[11] Fei Xue, Yen-Ting Chen, Yanzhen Wang, Fei Zhou, Yao-Feng Chang, B.Fowler and Jack Lee, “The effect of plasma treatment on reducing electroforming voltage of silicon oxide RRAM,”ECS Trans. 45, 245 (2012).
[12] Burt W. Fowler, Yao-Feng Chang, Fei Zhou, Yanzhen Wang, Pai-Yu Chen, Fei Xue, Yen-Ting Chen, Brad Bringhurst, Scott Pozder and Jack C. Lee,” Electroforming and resistive switching in silicon dioxide resistive memory devices,” RSC Adv. 5, 21215 (2015).
[13] Yao-Feng Chang, Pai-Yu Chen, Burt Fowler, Yen-Ting Chen, Fei Xue, Yanzhen Wang, Fei Zhou and Jack C. Lee, “Understanding the resistive switching characteristics and mechanism in active SiOx-based resistive switching memory,” Appl. Phys. 112, 123702 (2012).
[14] Yanzhen Wang, Burt Fowler, Fei Zhou, Yao-Feng Chang, Yen-Ting Chen, Fei Xue and Jack C. Lee, “Effects of sidewall etching on electrical properties of SiOx resistive random access memory,” Appl. Phys. Lett. 103, 213505(2013).
[15] Fei Zhou, Yao-Feng Chang, Burt Fowler, Kwangsub Byun and Jack C. Lee, “Stabilization of multiple resistance levels by current-sweep in SiOx-based resistive switching memory,” Appl. Phys. Lett. 106, 063508 (2015).
[16] Wong, H-S. Philip, et al. “Metal-oxide RRAM,” Proceedings of the IEEE 100.6(2012):1951-1970.
[17] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Electrochemical metallization memories-Fundamentals, applications, prospects,” Nanotechnology, vol.22, no. 25, 254003, 2011.
[18] W. Wang, T. Nabatame, Y. Shimogaki, “Interface structure of HfNx/SiO2 stack grown by MOCVD using TDEAHf precursor,” Surf. Sci. 588(2005) 108-116.
[19] P. Lorenzi, R. Rao, T. Prifti, F. Irrera, “Impact of the forming conditions and electrode metals on read disturb in HfO2-based RRAM”, Microelectron. Reliab. 53(2013) 1203-1207.
[20] R. Jiang, E. Xie, Z. Chen, Z. Zhang, “Electricial property of HfOxNy-HfO2-HfOxNy sandwich-stack films,”Appl.Surf.Sci.253 (2006) 2421-2424.
[21] Zheng Fang, Xin Peng Wang, Joon Sohn, Bao Bin Weng, Zhi Ping Zhang, Zhi Xian Chen, Yan Zhe Tang, Guo-Qiang Lo, J. Provine, Simon S. Wong, H.-S. Philip Wong, and Dim-Lee Kwong, “The Role of Ti Capping Layer in HfOx-Based RRAM Devices,” IEEE Electron Device Letters, Vol. 35, No. 9, September 2014.