Application of Neural Network on the Loading of Copper onto Clinoptilolite
Authors: John Kabuba
Abstract:
The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ionexchange.
Keywords: Clinoptilolite, loading, modeling, Neural network.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1094607
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575References:
[1] R.E. Clement,G.A. Eiceman, C.J. Koester, "Environmental analysis”. J. Anal. Chem. 1995,vol.67,pp.221-255.
[2] E. Muzenda, J. Kabuba,F. Ntuli, M. Mollagee and A.F. Mulaba- Bafubiandi, "Cu (II) Removal from Synthetic Waste Water by Ion Exchange Process”, Proceedings of the WCECS, vol. II, 2011, Oct. 19- 21, San Francisco, USA.
[3] A. Amankwah,J. Kabuba , A.F. Mulaba-Bafubiandi, "Modeling of Ion exchange process using time delayed Neural Networks”. Proceedings of the ICMET, 2011, vol. 1, pp. 447-451.
[4] J. Kabuba, A.F. Mulaba-Bafubiandi, "Modeling of Co-Cu elution from clinoptilolite using Neural Network”, World Academy of Science, Engineering and Technology, 2012, vol. 68, pp. 1222-1225.
[5] E.S. Elmolla, M. Chaudhuri, M.M. Eltoukhy,"The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process”, J. Haz. Mat., 2010, vol 179: 127-134.
[6] V.K. Pareek, M.P. Brungs, A.A. Adesina, R. Sharma. "Artificial neural network modeling of a multiphase photodegradation system”, J. Photochem. Photobiol. A: Chem., 2002, vol. 149, pp. 139-146.
[7] M. Cote M, B.P.A. Grandjean, P. Lessard, J. Thibault, "Dynamic modeling of activated sludge process: improving prediction using neural networks”, water Res., 1995, vol. 29, pp. 995-1004.
[8] I. Machon, H. Lopez, J. Rodriguez-Iglesias, E. Maranan, I. Vazquez, " Simulation of a coke wastewater nitrification process using a feedforward neuronal net” , Environ. Model Softw., 2007, vol. 22, pp.1382- 1387.
[9] A. Aleboyeb, M.B. Kasiri, M.E. Olya, H. Aleboyeh, " Prediction of azo dye decolorization by UV/H2O2 usingartificial neural networks”, Dyes Pigments, 2008, vol. 77, pp. 288-294.
[10] N. Prakash, S.A. Manikandan, L. Govindarajan, V. Vijayagopal. "Prediction of biosorption efficiency for the removal of copper (II) using artificial neural networks”, J. of Hazardous Materials, 2008, pp.1268- 1275.
[11] N. Daneshvar, A.R. Kahataee, N. Djafarzadeh, "The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C.I. basic Yellow 28 by electrocoagulation process”, J. of Hazardous Materials, 2006, vol. B 137, pp. 1788-1795.
[12] A. Amankwah, J. Kabuba, "Comparison of Neural Networks and Kalman Filter for the modeling of Ion Exchange Process”, Life Sci J., 2013, vol. 10, pp. 1012-1015.
[13] S.A. Abdulkareen, E. Muzenda, A.S. Afolabi, J. Kabuba, " Treatment of clinoptilolite as an Adsorbent for the Removal of copper Ion from Synthetic Wastewater solution”, Arab. J. Sci. Eng., 2013, vol. 38, pp. 2263-2272.
[14] B.B. Mamba, D.W. Nyembe and A.F. Mulaba-Bafubiandi, "The effect of conditioning with NaCl, KCl and HCl on the performance of natural clinoptilolite’s removal efficiency of Cu2+ and Co2+ Synthetic solution”, Water SA., 2009, vol. 36, pp. 437-444.
[15] E. Oguz,A. Tortum, B. Keskinler. "Determination of the apparent rate constants of the degradation of humic substances by ozonation and modeling of the removal of humic substances from the aqueous solutions with neural network”, J. of Hazardous Materials, 2008, vol. 157, pp. 455-463.
[16] F.L. Toma, S. Guessasma, D. Klein, G. Montavon, G. Bertrand,C. Coddet,"Neural computation to predict TiO2photocatalytic efficiency for nitrogen oxides removal. J. Photochem. Photobiol. A; Chem.2004, vol. 165, pp. 91-96.
[17] D.R. Baughman and Y.A. Liu, "Neural Networks in Bioprocessing and Chemical Engineering”. Academic Press, San Diego, California, USA, 1995.
[18] M. Sadrzadeh, T. Mohammadi, J. Ivakpour, N. Kasiri, "Separation of lead ions from wastewater using electrodialysis: Comparing mathematical and neural network modeling”, Chemical Engineering Journal, 2008, vol. 144, pp. 431-441.
[19] M. Horsfall, A.I. Spiff, "Effects of metals ion concentration on the biosorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyan)”, Afr. J. Biotechnol. 2005, vol. 4, pp. 191-196.