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Abstract—Let S be an integral domain with field of fractions F
and let A be an F -algebra. An S-subalgebra R of A is called S-nice
if R∩F = S and the localization of R with respect to S \{0} is A.
Denoting by W the set of all S-nice subalgebras of A, and defining
a notion of open sets on W, one can view W as a T0-Alexandroff
space. A characterization of the property of immediate neighbors in
an Alexandroff topological space is given, in terms of closed and open
subsets of appropriate subspaces. Moreover, two special subspaces of
W are introduced, and a way in which their closed and open subsets
induce W is presented.
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I. INTRODUCTION

TOPOLOGICAL spaces of rings or ideals have been

studied for almost a century now. The study of such

spaces and the reciprocity between their topological properties

and their algebraic properties is a fruitful and important topic.

The pioneer of this research was Stone, who studied in 1936

topological spaces of prime ideals in the context of distributive

lattices and Boolean algebras [16], [17].

Let K be a field and let D be a subring of K. Let Zar(K/D)
denote the set of all valuation domains having quotient field

K and containing D. In 1944, Zariski [18] defined a topology

on Zar(K/D); the basic open sets of this space are the sets

of the form V (M), where V (M) denotes the elements of

Zar(K/D) containing a finite subset M of K. Zar(K/D) is

called the Zariski-Riemann space. Zariski proved a general

result implying that this space is quasi-compact.

In 1969 Hochster [6] studied the notion of a spectral space

using purely topological properties. Recall that a topological

space T is called a spectral space if the following conditions

are satisfied:

(a) T is quasi-compact and T0.

(b) The set of open and quasi-compact subsets of T is closed

under finite intersections, and is a basis of the topology.

(c) T is sober.

By Hochster’s characterization, these spaces are precisely

the topological spaces which arise as the prime spectrum of a

commutative unitary ring, equipped with the Zariski topology

- the topology whose closed sets are the sets of the form

V (I) = {P ∈ Spec(R) | I ⊆ P},
where I is an ideal of R.

In 1986 Dobbs and Fontana explicitly provided a Bézout

domain whose prime spectrum is canonically homeomorphic

to Zar(K/D) in the special case where K is the quotient
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field of D (see [2, Theorem 2]). Other proofs, using a variety

of different techniques, can be found in [3], [5] and [8].

In 2013 Finocchiaro, Fontana, and Loper [4] extended this

result and proved that for any subring D of K, the space

Zar(K/D) is spectral with respect to the constructible (and to

the Zariski) topology, by explicitly constructing a ring whose

prime spectrum is canonically homeomorphic to Zar(K/D).
We note that in this paper the symbol ⊂ means proper

inclusion and the symbol ⊆ means inclusion or equality. Let

R be a commutative ring with unity and let Spec(R) denote

the prime spectrum of R. Two basic properties concerning

Spec(R) were presented by Irving Kapalansky in his book

“Commutative Rings”. The first property, denoted by (K1), is

that every nonempty totally ordered subset of Spec(R) has an

infimum and a supremum (cf. [7, Theorem 9]). The second

property, denoted by (K2), is that given two prime ideals

P1 ⊂ P2, there exist prime ideals

P1 ⊆ P3 ⊂ P4 ⊆ P2

such that P3 and P4 are immediate neighbors; i.e., there

exists no prime ideal between P3 and P4 (cf. [7, Theorem

11]). Kaplansky conjectured that every partially ordered set

satisfying these two properties is isomorphic to the prime

spectrum of some commutative ring. However, in 1969

Hochster showed that the conjecture was false. As mentioned

above, Hochster proved that the spectral spaces (that were

defined using purely topological properties) are precisely the

topological spaces which arise as the prime spectrum of a

commutative ring (cf. [6, Theorem 6 and Proposition 10]). In

1972, Speed (cf. [15, Corollary 1]) noted that the following

characterization of partially ordered sets appearing as the

prime spectra of commutative rings can be deduced from

Hochster’s result: a partially ordered set P is isomorphic to the

prime spectrum of some commutative ring if and only if P is

an inverse limit of finite partially ordered sets in the category

of partially ordered sets.

In this paper, we discuss topological and algebraic aspects of

algebras over an integral domain, with emphasis on immediate

neighbors.

Recall that a topological space whose set of open sets is

closed under arbitrary intersections is called an Alexandroff

space, after P. Alexandroff who first introduced such

topological spaces in his paper [1] from 1937. Equivalently,

A topological space is called an Alexandroff space if every

element has a minimal open set containing it.

Let (T, τ) be a topological space. For X ⊆ T we denote

by clX the closure of X . It is well known, that if one defines

x ≤τ y whenever x ∈ cl{y}, then ≤τ is a quasi-order (also

called a preorder); i.e., a reflexive and transitive relation. ≤τ
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is called the specialization order. Recall that (T, τ) is called

T0 if for every two distinct elements in T , there exists an open

set containing one of them but not the other. It is known that

(T, τ) is T0 if and only if ≤τ is a partial order; i.e., a preorder

which is also antisymmetric.

We discuss now some of the common definitions we use

from order theory.

Let P be a set with a preorder ≤. Let M ⊆ P . We say that

a ∈ M is minimal (resp. maximal) in M if for all x ∈ M ,

x ≤ a (resp. x ≥ a) implies x = a. We say that a ∈ M is

a smallest (resp. greatest) element in M if for all x ∈ M we

have a ≤ x (resp. a ≥ x). As mentioned above, if the relation

≤ is also antisymmetric then it is called a partial order and P
is called a partially ordered set, or a poset. Let L ⊆ P . We

say that a ∈ P is a lower (resp. upper) bound of L if a ≤ x
(resp. a ≥ x) for all x ∈ L. If the set of lower (resp. upper)

bounds of L has a unique greatest (resp. smallest) element,

this element is called the greatest lower (resp. least upper)

bound of L, and is denoted by infL (resp. supL). We say that

L is a lower set if

L = {y ∈ P | y ≤ x for some x ∈ L}.
We say that L is an upper set if

L = {y ∈ P | y ≥ x for some x ∈ L}.
Let (P,≤) be a poset and let a, b ∈ P . We write a < b if

a ≤ b and a �= b. We say that a is a predecessor of b and

that b is a successor of a whenever a < b. If a < b and there

is no c ∈ P such that a < c < b we say that a and b are

immediate neighbors in P ; in this case, we also say that a
is an immediate predecessor of b and that b is an immediate
successor of a.

We say that P satisfies (K1) if every nonempty totally

ordered subset of P has an infimum and a supremum. We

say that P satisfies (K2) if for all a < b in P there exist

a ≤ c < d ≤ b in P such that c and d are immediate neighbors.

let E ⊆ P be a chain and let a, b ∈ P . We say that E is a

maximal chain between a and b if a is the smallest member of

E, b is the greatest member of E, and for any x ∈ P \E such

that a < x < b, one has E∪{x} is not a chain (i.e., one cannot

“insert” an element of P between the elements of E). We say

that E is a maximal chain in P if for any x ∈ P \E, one has

E ∪ {x} is not a chain. We define now two special subsets of

P ; the set of all immediate predecessors in P , denoted P−,

is the set

P− = {a ∈ P | a is an immediate predecessor in P};
and the set of all immediate successors in P , denoted P+, is

the set

P+ = {a ∈ P | a is an immediate successor in P}.
Finally, P is called strictly inductive if every nonempty chain

in P has a least upper bound.

Throughout this paper S denotes an integral domain with

field of fractions F and A is an F -algebra. An S-subalgebra R
of A is called S-nice if R is lying over S and the localization

of R with respect to S \ {0} is A. We denote by W the set of

all S-nice subalgebras of A. It should be noted that the study

of S-nice subalgebras of A was initiated with the study of

quasi-valuations; a quasi-valuation is a generalization of the

famous and most applicable notion of valuation. For extensive

and detailed research on quasi-valuations see [9]- [12].

For every M ⊆ A we denote by V (M) the set of all S-nice

subalgebras of A containing M . It is easy to see that V ({0}) =
W, V (F ) = ∅, and for every M1,M2 ⊆ A, we have

V (M1 ∪M2) = V (M1) ∩ V (M2).

Thus, the set B={V (M)}M⊆A is a basis for a topology on W.

Moreover, for every set {Mi}i∈I of subsets of A, we have

V (∪i∈IMi) = ∩i∈IV (Mi).

Thus, W is an Alexandroff topological space with respect to

the topology whose basis is B.

It is not difficult to see that, for R ∈ W, the minimal open

set containing R is actually V (R). Also, for R1, R2 ∈ W, the

specialization order on W is defined by R1 ≤ R2 whenever

R1 ∈ cl{R2}; i.e., every open set containing R1 also contains

R2; since W is Alexandroff,

R1 ∈ cl{R2} iff R2 ∈ V (R1); i.e., R1 ⊆ R2.

In other words, the specialization order on W is the order

of containment; thus, in particular, the topology on W is T0.

Moreover, as in any Alexandroff topological space, C ⊆ W is

closed iff C is a lower set of W; namely,

C = {R ∈ W | R ⊆ R1 for some R1 ∈ C}.
Dually, U ⊆ W is open iff U is an upper set of W; namely,

U = {R ∈ W | R1 ⊆ R for some R1 ∈ U}.

II. IMMEDIATE NEIGHBORS IN W

In this section we discuss some known results regarding the

topological space W, as well as presenting several key results

concerning immediate neighbors in W.

The notion of an S-stable basis is important to the study of

W; it is defined as follows: let B be a basis of A over F . B
is called S-stable if there exists a basis C of A over F such

that for all c ∈ C and b ∈ B, one has

cb ∈
∑

y∈B

Sy.

An important observation regarding S-stable bases is the

fact that whenever A is finite dimensional over F , there exists

an S-stable basis of A over F ; more precisely, we have the

following proposition.

Proposition 1. (cf. [13, Proposition 3.12]) If A is finite
dimensional over F , then every basis of A over F is S-stable.

Remark 1. It is still not known whether an S-stable basis of

A over F exists for an arbitrary algebra A over F .

The existence of an S-stable basis is important to our study

because of the following existence theorem.

Theorem 1. (cf. [13, Proposition 3.14]) If there exists an
S-stable basis of A over F , then there exists an S-nice
subalgebra of A.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:15, No:3, 2021 

47International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
5,

 N
o:

3,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

91
5.

pd
f



The property “going-down” is well-known as part of the

classical lifting conditions of prime ideals. The following

Lemma is a going-down lemma for S-nice subalgebras.

Lemma 1. (cf. [13, Proposition 3.20]) Let S1 ⊆ S2 be integral
domains with field of fractions F such that S2 �= F . Assume
that there exists an S1-stable basis of A over F . Let R be
an S2-nice subalgebra of A. Then there exists an S1-nice
subalgebra of A, which is contained in R.

The proof relies on the fact that there exists an S1-nice

subalgebra of A by the existence theorem, and an intersection

of an S2-nice subalgebra of A and an S1-nice subalgebra of

A is again an S1-nice subalgebra of A.

Taking S1 = S2 in the previous lemma, we deduce the

existence of an infinite decreasing chain of S-nice subalgebras

of A; more precisely, the following proposition was proved in

[13].

Proposition 2. Assume that there exists an S-stable basis of
A over F . Let R be an S-nice subalgebra of A. Then there
exists an infinite decreasing chain of S-nice subalgebras of A
starting from R. In particular, a minimal S-nice subalgebra
of A does not exist.

We conclude,

Proposition 3. If A is finite dimensional over F then W is
infinite.

Proof: By Proposition 1 and Proposition 2.

We assume throughout this section that there exists an

S-stable basis of A over F ; in particular, W is not empty,

and W does not contain minimal elements.

The following four basic lemmas were proved in [14].

Lemma 2. Let R1 and R2 be two elements of W and let R be
an S-algebra satisfying R1 ⊆ R ⊆ R2; then R is an S-nice
subalgebra of A.

Lemma 3. Let {Ri}1≤i≤n be a finite subset of W; then
∩1≤i≤nRi ∈ W.

For subsets M ⊆ A and T ⊆ F one defines

T ·M = {
∑

1≤i≤n

timi | ti ∈ T,mi ∈ M}.

Lemma 4. Let K = {Ri}i∈I be a nonempty subset of W and
denote R0 = ∪i∈IRi. Then the following three properties are
valid:

(a) R0 ∩ F = S;
(b) F ·R0 = A; and
(c) If R0 is closed under addition then S ·R0 ⊆ R0.
In particular, if R0 is a ring then it is an S-nice subalgebra

of A.

Lemma 5. (W,⊆) is strictly inductive.

The following more delicate property of W can be deduced

from the proof of the previous lemma:

Lemma 6. Let E be a nonempty chain in W. Then

R0 = ∪R∈ER

is an element of W.

In [14] the following general property regarding

T0-topological spaces is proved: let T is a T0-topological

space such that every nonempty chain in T has an upper

bound; then any nonempty open subset of T has a maximal

element, which is also a maximal element of T . Using this

property it is easy to deduce that W contains a maximal

element; more precisely, we have:

Lemma 7. (cf. [14, Lemma 2.6]) Let U be a nonempty open
subset of W. Then there exists a maximal element in U , which
is also a maximal element of W.

The existence of an infimum (resp. supremum) of a

nonempty subset of W was characterized in [14, Proposition

2.11] by the existence of a lower (resp. upper) bound.

Explicitly, the following was proved.

Proposition 4. Let H be a nonempty subset of W; then
1. There exists a lower bound for H iff the infimum of H

exists; in this case infH = ∩R∈HR.
2. There exists an upper bound for H iff the supremum of

H exists.

Remark 2. Note that by Lemma 6, if H is a chain then

supH = ∪R∈HR.

The irreducible subsets of W play an important role in the

study of the topological structure of W, as discussed in [14]. It

is well known that in an Alexandroff topological space a set is

irreducible if and only if it is directed under the specialization

order.

Remark 3. In [14, Theorem 2.13] it is proved that an

irreducible subset of W has a supremum in W. In

view of the characterization of irreducible subsets of an

Alexandroff topological space, this fact can be considered as

a generalization of Lemma 6.

Inspired by [11], we characterize now immediate neighbors

in an Alexandroff topological space.

Proposition 5. Let T be an Alexandroff topological space and
let x1, x2 ∈ T such that x1 < x2. Then there exist immediate
neighbors in T between x1 and x2 iff there exist a maximal
chain E ⊆ T between x1 and x2, and a partition {C,U} of E
such that C is closed in E and U is open in E (with respect
to the induced topology of T on E), supC and infU exist in
T , and supC �=infU .

Proof: (⇒) Let y1 < y2 be immediate neighbors in T
between x1 and x2. Using Zorn’s Lemma, let C ⊆ T (resp.

U ⊆ T ) be a maximal chain between x1 and y1 (resp. between

y2 and x2). Since y1 < y2 are immediate neighbors in T , we

deduce that the disjoint union E = C ∪U is a maximal chain

in T between x1 and x2. Also, supC = y1 and infU = y2,

where C is a lower set of E and U is a upper set of E.

(⇐) By assumption, the chain E between x1 and x2 is the

disjoint union of the closed subset C and the open subset U ;

thus, for all c ∈ C and for all u ∈ U , we have

x1 ≤ c < u ≤ x2.
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Since supC and infU exist in T and are different, we get

x1 ≤ supC < infU ≤ x2.

By the assumption that E is a maximal chain between x1 and

x2, we get that there exists no z ∈ T such that

supC < z < infU.

So, supC and infU are immediate neighbors in T between x1

and x2.

Remark 4. Note that the C and U in the previous proposition

are also irreducible subsets of T (and of E), because they are

chains. Also note that supC is actually the greatest element of

C, and likewise infU is the smallest element of U .

It is easy to see that not every Alexandroff topological space

satisfies (K2); in the following proposition we prove that W

indeed satisfies (K2).

Proposition 6. W satisfies (K2).

Proof: Let R1 ⊂ R2 in W. Let E be a maximal chain in

W between R1 and R2 and let x ∈ R2 \R1. Let

C = {R ∈ E | x /∈ R}
and let

U = {R ∈ E | x ∈ R}.
Viewing E as a subspace of W, it is clear that C is a lower

set of E, and U is an upper set of E. It is also clear that E
is the disjoint union of C and U . By Lemma 6

supC = ∪R∈CR ∈ W,

and, since U has R1 as a lower bound, by Proposition 4,

infU = ∩R∈UR ∈ W.

Since x /∈ supC and x ∈ infU , we get supC �= infU . Thus,

by Lemma 5, W satisfies (K2).

Using the notation defined earlier, W− denotes the subspace

of W of all immediate predecessors in W, and W
+ denotes

the subspace of W of all immediate successors in W.

We prove now that the subspace W
+ generates W, i.e.,

every element of W can be presented by a union of elements

of W+.

Theorem 2. Let R0 ∈ W. Then there exists a unique maximal
nonempty closed subset C of W

+ (maximal with respect to
containment) such that R0 = ∪R∈CR. Furthermore, R0 =
∪R∈ER for every maximal chain E ⊆ C.

Proof: Let C = {R ∈ W
+ | R ⊆ R0}. By Lemma 2,

R0 is not minimal in W; thus, there exists R1 ∈ W such

that R1 ⊂ R0. Therefore, by Proposition 6, C �= ∅. Clearly,

C is a closed subset of W
+. Now, let E be any maximal

chain contained in C. Since E is bounded from above by R0,

by Proposition 4, ∪R∈ER ∈ W. Assume to the contrary that

∪R∈ER ⊂ R0. Then, by Lemma 6, there exists

∪R∈ER ⊂ R2 ∈ C.

Hence, E ∪ {R2} ⊆ C is a chain strictly containing E, a

contradiction. Thus,

∪R∈CR = ∪R∈ER = R0.

Note that by the definition of C, it is clear that any subset C1

of W+ such that R0 = ∪R∈C1
R satisfies C1 ⊆ C.

Dually to Theorem 2, we prove now that the subspace W
−

is rich enough to produce every non-maximal element in W;

in other words, every non-maximal element of W can be

presented as an intersection of elements of W
−. Note that,

unlike Theorem 2, in which it was proved that every element

of W is generated by W
+ (because minimal elements do not

exist in W, in view of Lemma 2), W− cannot generate W,

because maximal elements exist in W, as shown in Lemma 7.

Thus, W− can only generate W \ {maximal elements in W}.

The proof of the following theorem is quite similar to the proof

of Theorem 2. We prove it here for the reader’s convenience.

Theorem 3. Let R0 be a non-maximal element in W. Then
there exists a unique maximal nonempty open subset U of
W

− such that R0 = ∩R∈UR. Furthermore, R0 = ∩R∈ER for
every maximal chain E ⊆ U .

Proof: Let U = {R ∈ W
− | R0 ⊆ R}. By assumption,

R0 is not maximal in W; thus, there exists R1 ∈ W such

that R0 ⊂ R1. Therefore, by Proposition 6, U �= ∅. Clearly,

U is an open subset of W
−. Now, let E be any maximal

chain contained in U . Since E is bounded from below by R0,

by Proposition 4, ∩R∈ER ∈ W. Assume to the contrary that

R0 ⊂ ∩R∈ER. Then, by Lemma 6, there exists R2 ∈ U such

that

R0 ⊆ R2 ⊂ ∩R∈ER.

Hence, E ∪ {R2} ⊆ U is a chain strictly containing E, a

contradiction. Thus,

∩R∈UR = ∩R∈ER = R0.

Clearly, any subset U1 of W
− such that R0 = ∩R∈U1

R
satisfies U1 ⊆ U .
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