Search results for: Air chamber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 191

Search results for: Air chamber

71 Active Packaging Influence on Shelf Life Extension of Sliced Wheat Bread

Authors: Sandra Muizniece-Brasava, Lija Dukalska, Irisa Murniece, Ilona Dabina-Bicka, Emils Kozlinskis, Svetlana Sarvi, Ralfs Santars, Anna Silvjane

Abstract:

The research object was wheat bread. Experiments were carried out at the Faculty of Food Technology of the Latvia University of Agriculture. An active packaging in combination with modified atmosphere (MAP, CO2 60% and N2 40%) was examined and compared with traditional packaging in air ambiance. Polymer Multibarrier 60, PP and OPP bags were used. Influence of iron based oxygen absorber in sachets of 100 cc obtained from Mitsubishi Gas Chemical Europe Ageless® was tested on the quality during the shelf of wheat bread. Samples of 40±4 g were packaged in polymer pouches (110 mm x 120 mm), hermetically sealed by MULTIVAC C300 vacuum chamber machine, and stored in room temperature +21.0±0.5 °C. The physiochemical properties – weight losses, moisture content, hardness, pH, colour, changes of atmosphere content (CO2 and O2) in headspace of packs, and microbial conditions were analysed before packaging and in the 7th, 14th, 21st and 28th days of storage.

Keywords: Active packaging, wheat bread, shelf life.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3532
70 Effect of Swirl on Gas-Fired Combustion Behavior in a 3-D Rectangular Combustion Chamber

Authors: Man Young Kim

Abstract:

The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on the effect of inlet swirl flow through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal and flow characteristics in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate and temperature were shifted to forward direction compared with the case of no swirl.

Keywords: Gaseous Fuel, Inlet Swirl, Thermal Radiation, Turbulent Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
69 Numerical Modeling of Benzene Transport in Andosol and Sand: Adequacy of Diffusion and Equilibrium Adsorption Equations

Authors: Ping Du, Masaki Sagehashi, Akihiko Terada, Masaaki Hosomi

Abstract:

Prediction of benzene transport in soil and volatilization from soil to the atmosphere is important for the preservation of human health and management of contaminated soils. The adequacy of a simple numerical model, assuming two-phase diffusion and equilibrium of liquid/solid adsorption, was investigated by experimental data of benzene concentration in a flux chamber (with headspace) where Andosol and sand were filled. Adsorption experiment for liquid phase was performed to determine an adsorption coefficient. Furthermore, adequacy of vapor phase adsorption was also studied through two runs of experiment using sand with different water content. The results show that the model adequately predicted benzene transport and volatilization from Andosol and sand with water content of 14.0%. In addition, the experiment additionally revealed that vapor phase adsorption should be considered in diffusion model for sand with very low water content.

Keywords: Benzene; Transport Model, Adsorption, Soil Contaminant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
68 Heating of High-Density Hydrogen by High- Current Arc Radiation

Authors: A. V. Budin, Ph. G. Rutberg, M. E. Pinchuk, A. A. Bogomaz, V. Yu. Svetova

Abstract:

The investigation results of high-density hydrogen heating by high-current electric arc are presented at initial pressure from 5 MPa to 160 MPa with current amplitude up to 1.6 MA and current rate of rise 109-1011 A/s. When changing the initial pressure and current rate of rise, channel temperature varies from several electronvolts to hundreds electronvolts. Arc channel radius is several millimeters. But the radius of the discharge chamber greater than the radius of the arc channel on approximately order of magnitude. High efficiency of gas heating is caused by radiation absorption of hydrogen surrounding the arc. Current channel consist from vapor of the initiating wire. At current rate of rise of 109 A/s and relatively small current amplitude gas heating occurs due to radiation absorption in the band transparency of hydrogen by the wire vapours with photon energies less than 13.6 eV. At current rate of rise of 1011 A/s gas heating is due to hydrogen absorption of soft X-rays from discharge channel.

Keywords: High-density hydrogen heating by high-current electric arc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
67 Complementary Split Ring Resonator-Loaded Microstrip Patch Antenna Useful for Microwave Communication

Authors: Subal Kar, Madhuja Ghosh, Amitesh Kumar, Arijit Majumder

Abstract:

Complementary split-ring resonator (CSRR) loaded microstrip square patch antenna has been optimally designed with the help of high frequency structure simulator (HFSS). The antenna has been fabricated on the basis of the simulation design data and experimentally tested in anechoic chamber to evaluate its gain, bandwidth, efficiency and polarization characteristics. The CSRR loaded microstrip patch antenna has been found to realize significant size miniaturization (to the extent of 24%) compared to the conventional-type microstrip patch antenna both operating at the same frequency (5.2 GHz). The fabricated antenna could realize a maximum gain of 4.17 dB, 10 dB impedance bandwidth of 34 MHz, efficiency 50.73% and with maximum cross-pol of 10.56 dB down at the operating frequency. This practically designed antenna with its miniaturized size is expected to be useful for airborne and space borne applications at microwave frequency.

Keywords: Split ring resonator, metamaterial, CSRR loaded patch antenna, microstrip patch antenna, LC resonator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
66 Impact of Carbonation on Lime-Treated High Plasticity Index Clayey Soils

Authors: Saurav Bhattacharjee, Syam Nair

Abstract:

Lime stabilization is a sustainable and economically viable option to address strength deficiencies of subgrade soils. However, exposure of stabilized layers to environmental elements can lead to a reduction in post-stabilization strength gain expected in these layers. The current study investigates the impact of carbonation on the strength properties of lime-treated soils. Manufactured soils prepared using varying proportions of bentonite silica mixtures were used in the study. Lime-treated mixtures were exposed to different atmospheric conditions created by varying the concentrations of CO₂ in the testing chamber. The impact of CO₂ diffusion was identified based on changes in carbonate content and unconfined compressive strength (UCS) properties. Changes in soil morphology were also investigated as part of the study. The rate of carbonation was observed to vary polynomially (2nd order) with exposure time. The strength properties of the mixes were observed to decrease with exposure time.

Keywords: Manufactured soil, carbonation, morphology, unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137
65 Simulation of the Performance of the Reforming of Methane in a Primary Reformer

Authors: A. Alkattib, M. Boumaza

Abstract:

Steam reforming is industrially important as it is  incorporated in several major chemical processes including the  production of ammonia, methanol, hydrogen and ox alcohols. Due to  the strongly endothermic nature of the process, a large amount of heat  is supplied by fuel burning (commonly natural gas) in the furnace  chamber. Reaction conversions, tube catalyst life, energy  consumption and CO2 emission represent the principal factors  affecting the performance of this unit and are directly influenced by  the high operating temperatures and pressures.  This study presents a simulation of the performance of the  reforming of methane in a primary reformer, through a developed  empirical relation which enables to investigate the effects of  operating parameters such as the pressure, temperature, steam to  carbon ratio on the production of hydrogen, as well as the fraction of  non converted methane.  It appears from this analysis that the exit temperature Te, the  operating pressure as well the steam to carbon ratio has an important  effect on the reforming of methane.

 

Keywords: Reforming, methane, performance, hydrogen, parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
64 The Buffer Gas Influence Rate on Absolute Cu Atoms Density with regard to Deposition

Authors: S. Sobhanian, H. Naghshara, N. Sadeghi, S. Khorram

Abstract:

The absolute Cu atoms density in Cu(2S1/2ÔåÉ2P1/2) ground state has been measured by Resonance Optical Absorption (ROA) technique in a DC magnetron sputtering deposition with argon. We measured these densities under variety of operation conditions: pressure from 0.6 μbar to 14 μbar, input power from 10W to 200W and N2 mixture from 0% to 100%. For measuring the gas temperature, we used the simulation of N2 rotational spectra with a special computer code. The absolute number density of Cu atoms decreases with increasing the N2 percentage of buffer gas at any conditions of this work. But the deposition rate, is not decreased with the same manner. The deposition rate variation is very small and in the limit of quartz balance measuring equipment accuracy. So we conclude that decrease in the absolute number density of Cu atoms in magnetron plasma has not a big effect on deposition rate, because the diffusion of Cu atoms to the chamber volume and deviation of Cu atoms from direct path (towards the substrate) decreases with increasing of N2 percentage of buffer gas. This is because of the lower mass of N2 atoms compared to the argon ones.

Keywords: Deposition rate, Resonance Optical Absorption, Sputtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
63 Current Density Effect on Nickel Electroplating Using Post Supercritical CO2 Mixed Watts Electrolyte

Authors: Chun-Ying Lee, Mei-Wen Wu, Van Cuong Nguyen, Hung-Wei Chuang

Abstract:

In this study, a nickel film with nano-crystalline grains, high hardness and smooth surface was electrodeposited using a post supercritical carbon dioxide (CO2) mixed Watts electrolyte. Although the hardness was not as high as its Sc-CO2 counterpart, the thin coating contained significantly less number of nano-sized pinholes. By measuring the escape concentration of the dissolved CO2 in post Sc-CO2 mixed electrolyte with the elapsed time, it was believed that the residue of dissolved CO2 bubbles should closely relate to the improvement in hardness and surface roughness over its conventional plating counterpart. Therefore, shortening the duration of electroplating with the raise of current density up to 0.5 A/cm2 could effectively retain more post Sc-CO2 mixing effect. This study not only confirms the roles of dissolved CO2 bubbles in electrolyte but also provides a potential process to overcome most issues associated with the cost in building high-pressure chamber for large size products and continuous plating using supercritical method.

Keywords: Additive-free electrolyte, electroplating, nickel, supercritical CO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3612
62 From Experiments to Numerical Modeling: A Tool for Teaching Heat Transfer in Mechanical Engineering

Authors: D. Zabala, Y. Cárdenas, G. Núñez

Abstract:

In this work the numerical simulation of transient heat transfer in a cylindrical probe is done. An experiment was conducted introducing a steel cylinder in a heating chamber and registering its surface temperature along the time during one hour. In parallel, a mathematical model was solved for one dimension transient heat transfer in cylindrical coordinates, considering the boundary conditions of the test. The model was solved using finite difference method, because the thermal conductivity in the cylindrical steel bar and the convection heat transfer coefficient used in the model are considered temperature dependant functions, and both conditions prevent the use of the analytical solution. The comparison between theoretical and experimental results showed the average deviation is below 2%. It was concluded that numerical methods are useful in order to solve engineering complex problems. For constant k and h, the experimental methodology used here can be used as a tool for teaching heat transfer in mechanical engineering, using mathematical simplified models with analytical solutions.

Keywords: Heat transfer experiment, thermal conductivity, finite difference, engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
61 Influence of Active Packaging on the Shelf Life of Apple-Black Currant Marmalade Candies

Authors: Sandra Muizniece-Brasava, Lija Dukalska, Solvita Kampuse, Irisa Murniece, Martins Sabovics, IlonaDabina-Bicka, Emils Kozlinskis, Svetlana Sarvi

Abstract:

The research object was apple-black currant marmalade candies. Experiments were carried out at the Faculty of Food Technology of the Latvia University of Agriculture. An active packaging in combination with modified atmosphere (MAP, CO2 100%) was examined and compared with traditional packaging in air ambiance. Polymer Multibarrier 60 and paper bags were used. Influence of iron based oxygen absorber in sachets of 500 cc obtained from Mitsubishi Gas Chemical Europe Ageless® was tested on the quality during the shelf of marmalade. Samples of 80±5 g were packaged in polymer pouches (110 mm x 110 mm), hermetically sealed by MULTIVAC C300 vacuum chamber machine, and stored in room temperature +20.0±1.0 °C. The physiochemical properties – weight losses, moisture content, hardness, aw, pH, colour, changes of atmosphere content (CO2 and O2) in headspace of packs, and microbial conditions were analysed before packaging and in the 1st, 3rd , 5th, 8th, 11th and 15th weeks of storage.

Keywords: Active packaging, marmalade candies, shelf life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
60 Study on Discharge Current Phenomena of Epoxy Resin Insulator Specimen

Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari

Abstract:

This paper presents the experimental results of discharge current phenomena on various humidity, temperature, pressure and pollutant conditions of epoxy resin specimen. The leakage distance of specimen was 3 cm, that it was supplied by high voltage. The polluted condition was given with NaCl artificial pollutant. The conducted measurements were discharge current and applied voltage. The specimen was put in a hermetically sealed chamber, and the current waveforms were analyzed with FFT. The result indicated that on discharge condition, the fifth harmonics still had dominant, rather than third one. The third harmonics tent to be appeared on low pressure heavily polluted condition, and followed by high humidity heavily polluted condition. On the heavily polluted specimen, the peaks discharge current points would be high and more frequent. Nevertheless, the specimen still had capacitive property. Besides that, usually discharge current points were more frequent. The influence of low pressure was still dominant to be easier to discharge. The non-linear property would be appear explicitly on low pressure and heavily polluted condition.

Keywords: discharge current, third harmonic, fifth harmonic, epoxy resin, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
59 Mathematical Simulation of Bubble Column Slurry Reactor for Direct Dimethyl Ether Synthesis Process from Syngas

Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang

Abstract:

Based on a global kinetics of direct dimethyl ether (DME) synthesis process from syngas, a steady-state one-dimensional mathematical model for the bubble column slurry reactor (BCSR) has been established. It was built on the assumption of plug flow of gas phase, sedimentation-dispersion model of catalyst grains and isothermal chamber regardless of reaction heats and rates for the design of an industrial scale bubble column slurry reactor. The simulation results indicate that higher pressure and lower temperature were favorable to the increase of CO conversion, DME selectivity, products yield and the height of slurry bed, which has a coincidence with the characteristic of DME synthesis reaction system, and that the height of slurry bed is lessen with the increasing of operation temperature in the range of 220-260℃. CO conversion, the optimal operation conditions in BCSR were proposed. 

Keywords: Alcohol/ether fuel, bubble column slurry reactor, global kinetics, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2624
58 Design and Microfabrication of a High Throughput Thermal Cycling Platform with Various Annealing Temperatures

Authors: Sin J. Chen, Jyh J. Chen

Abstract:

This study describes a micro device integrated with multi-chamber for polymerase chain reaction (PCR) with different annealing temperatures. The device consists of the reaction polydimethylsiloxane (PDMS) chip, a cover glass chip, and is equipped with cartridge heaters, fans, and thermocouples for temperature control. In this prototype, commercial software is utilized to determine the geometric and operational parameters those are responsible for creating the denaturation, annealing, and extension temperatures within the chip. Two cartridge heaters are placed at two sides of the chip and maintained at two different temperatures to achieve a thermal gradient on the chip during the annealing step. The temperatures on the chip surface are measured via an infrared imager. Some thermocouples inserted into the reaction chambers are used to obtain the transient temperature profiles of the reaction chambers during several thermal cycles. The experimental temperatures compared to the simulated results show a similar trend. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.

Keywords: Polymerase chain reaction, thermal cycles, temperature gradient, micro-fabrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
57 Interaction between Unsteady Supersonic Jet and Vortex Rings

Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya

Abstract:

The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.

Keywords: Computational fluid dynamics, shock wave, unsteady jet, vortex ring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
56 Operation Parameters of Vacuum Cleaned Filters

Authors: Wilhelm Hoeflinger, Thomas Laminger, Johannes Wolfslehner

Abstract:

For vacuum cleaned dust filters there exist no calculation methods to determine design parameters (e.g. traverse velocity of the nozzle, filter area…). In this work a method to calculate the optimum traverse velocity of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions.

A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other.

Keywords: Design of dust filter, Dust removing, Filter regeneration, Operation parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
55 Comparison Ageing Deterioration of Silicone Rubber Outdoor Polymer Insulators in Artificial Accelerated Salt Fog Ageing Test

Authors: S.Thong-Om, W. Payakcho, J. Grasaesom, A. Oonsivilai, B. Marungsri

Abstract:

This paper presents the experimental results of silicone rubber outdoor polymer insulators in salt fog ageing test based on IEC 61109. Specimens made ofHTV silicone rubber with ATH content having three different configurations, straight shedsalternated sheds, and incline and alternate sheds, were tested continuously 1000 hrs.in artificial salt fog chamber. Contamination level, reduction of hydrophobicity and hardness measurement were used as physical damaged inspection techniques to evaluate degree of surface deterioration. In addition, chemical changing of tested specimen surface was evaluated by ATR-FTIRto confirm physical damaged inspection. After 1000 hrs.of salt fog test, differences in degree of surface deterioration were observed on all tested specimens. Physical damaged inspection and chemical analysis results confirmed the experimental results as well.

Keywords: Ageing deterioration, Silicone rubber, Polymer Insulator, Salt fog ageing test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536
54 Experimental Investigation on Effect of the Zirconium + Magnesium Coating of the Piston and Valve of the Single-Cylinder Diesel Engine to the Engine Performance and Emission

Authors: Erdinç Vural, Bülent Özdalyan, Serkan Özel

Abstract:

The four-stroke single cylinder diesel engine has been used in this study, the pistons and valves of the engine have been stabilized, the aluminum oxide (Al2O3) in different ratios has been added in the power of zirconium (ZrO2) magnesium oxide (MgO), and has been coated with the plasma spray method. The pistons and valves of the combustion chamber of the engine are coated with 5 different (ZrO2 + MgO), (ZrO2 + MgO + 25% Al2O3), (ZrO2 + MgO + 50% Al2O3), (ZrO2 + MgO + 75% Al2O3), (Al2O3) sample. The material tests have been made for each of the coated engine parts with the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) using Cu Kα radiation surface analysis methods. The engine tests have been repeated for each sample in any electric dynamometer in full power 1600 rpm, 2000 rpm, 2400 rpm and 2800 rpm engine speeds. The material analysis and engine tests have shown that the best performance has been performed with (ZrO2 + MgO + 50% Al2O3). Thus, there is no significant change in HC and Smoke emissions, but NOx emission is increased, as the engine improves power, torque, specific fuel consumption and CO emissions in the tests made with sample A3.

Keywords: Ceramic coating, material characterization, engine performance, exhaust emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
53 Automated Separation of Organic Liquids through Their Boiling Points

Authors: Muhammad Tahir Qadri, Syed Shafi-Uddin Qadri, Faizan Farid, Nabeel Abid

Abstract:

This paper discuss the separation of the miscible liquids by means of fractional distillation. For complete separation of liquids, the process of heating, condensation, separation and storage is done automatically to achieve the objective. PIC micro-controller has been used to control each and every process of the work. The controller also controls the storage process by activating and deactivating the conveyors. The liquids are heated which on reaching their respective boiling points evaporate and enter the condensation chamber where they convert into liquid. The liquids are then directed to their respective tanks by means of stepper motor which moves in three directions, each movement into different tank. The tank on filling sends the signal to controller which then opens the solenoid valves. The tank is emptied into the beakers below the nozzle. As the beaker filled, the nozzle closes and the conveyors come into operation. The filled beaker is replaced by an empty beaker from behind. The work can be used in oil industries, chemical industries and paint industries.

Keywords: Miscible Liquid Separation Unit, Distillation, Waste Water Treatment, Organic Liquids Collection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
52 Effect of Humidity on in-Process Crystallization of Lactose during Spray Drying

Authors: Amirali Ebrahimi, T. A. G. Langrish

Abstract:

The effect of various humidities on process yields and degrees of crystallinity for spray-dried powders from spray drying of lactose with humid air in a straight-through system have been studied. It has been suggested by Williams–Landel–Ferry kinetics (WLF) that a higher particle temperature and lower glass-transition temperature would increase the crystallization rate of the particles during the spray-drying process. Freshly humidified air produced by a Buchi-B290 spray dryer as a humidifier attached to the main spray dryer decreased the particle glass-transition temperature (Tg), while allowing the particle temperature (Tp) to reach higher values by using an insulated drying chamber. Differential scanning calorimetry (DSC) and moisture sorption analysis were used to measure the degree of crystallinity for the spray-dried lactose powders. The results showed that higher Tp-Tg, as a result of applying humid air, improved the process yield from 21 ± 4 to 26 ± 2% and crystallinity of the particles by decreasing the latent heat of crystallization from 43 ± 1 to 30 ± 11 J/g and the sorption peak height from 7.3 ± 0.7% to 6 ± 0.7%.

Keywords: Lactose, crystallization, spray drying, humid air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
51 Verification of K-ω SST Turbulence Model for Supersonic Internal Flows

Authors: J. Kolář, V. Dvořák

Abstract:

In this work, we try to find the best setting of Computational Fluid Dynamic solver available for the problems in the field of supersonic internal flows. We used the supersonic air-toair ejector to represent the typical problem in focus. There are multiple oblique shock waves, shear layers, boundary layers and normal shock interacting in the supersonic ejector making this device typical in field of supersonic inner flows. Modeling of shocks in general is demanding on the physical model of fluid, because ordinary conservation equation does not conform to real conditions in the near-shock region as found in many works. From these reasons, we decided to take special care about solver setting in this article by means of experimental approach of color Schlieren pictures and pneumatic measurement. Fast pressure transducers were used to measure unsteady static pressure in regimes with normal shock in mixing chamber. Physical behavior of ejector in several regimes is discussed. Best choice of eddy-viscosity setting is discussed on the theoretical base. The final verification of the k-ω SST is done on the base of comparison between experiment and numerical results.

Keywords: CFD simulations, color Schlieren, k-ω SST, supersonic flows, shock waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6471
50 Simulation of Climate Variability for Assessing Impacts on Yield and Genetic Change of Thai Soybean

Authors: Kanita Thanacharoenchanaphas, Orose Rugchati

Abstract:

This study assessed the effects of climate change on Thai soybeans under simulation situations. Our study is focused on temperature variability and effects on growth, yield, and genetic changes in 2 generations of Chiang Mai 60 cultivars. In the experiment, soybeans were exposed to 3 levels of air temperature for 8 h day-1 in an open top chamber for 2 cropping periods. Air temperature levels in each treatment were controlled at 30-33°C (± 2.3) for LT-treatment, 33-36°C ( ± 2.4) for AT-treatment, and 36-40 °C ( ± 3.2) for HT-treatment, respectively. Positive effects of high temperature became obvious at the maturing stage when yield significantly increased in both cropping periods. Results in growth indicated that shoot length at the pre-maturing stage (V3-R3) was more positively affected by high temperature than at the maturing stage. However, the positive effect on growth under high temperature was not found in the 2nd cropping period. Finally, genetic changes were examined in phenotype characteristics by the AFLPs technique. The results showed that the high temperature factor clearly caused genetic change in the soybeans and showed more alteration in the 2nd cropping period.

Keywords: simulation, air temperature, variability, Thai soybean, yield , genetic change

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
49 Comparison of Ageing Deterioration of Silicone Rubber Housing Material for Outdoor Polymer Insulators

Authors: S.Thong-Om, W. Payakcho, J. Grasasom, A. Oonsivilaiand B. Marungsri

Abstract:

This paper presents the comparison ageing deterioration of silicone rubber housing material for outdoor polymer insulators by using salt fog ageing test based on IEC 61109 and outdoor exposure test.Four types of high temperature silicone vulcanized silicone rubber sheet with different amount of ATH were used as testing specimen. For salt fog ageing test, the specimens were tested continuously 1000 hours with energized in test chamber. For outdoor exposure test, the specimens were hung continuously 18 months without energized. Physical and chemical analyses were conducted to evaluate degree of ageing deterioration of tested specimens. Slightly surface erosion was observed on specimen surface after salt fog ageing test and no erosion was observed on surface of outdoor exposure specimen. However, comparable degree of ageing deterioration can be seen from surface analysis results.

Keywords: Accelerated ageing test, outdoor exposure test, HTV silicone rubber, housing material, salt fog test, surface erosion, polymer insulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3959
48 Biomass Gasification and Microcogeneration Unit – EZOB Technology

Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála

Abstract:

This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot-air turbo-set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.

Keywords: Biomass, combustion, gasification, microcogeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
47 Absorbed Dose Measurement in Gonads Menduring Abdominal and Pelvicradiotherapy

Authors: Sadegh Masoudi, Ali Asghar Yousefi, Somayeh Nourollahi, Fatemeh Noughani

Abstract:

Two different testicular tissues have to be distinguished in regard to radiation damage: first the seminiferous tubules, corresponding to the sites of spermatogenesis, which are extremely radiosensitive. Second the testosterone secreting Leydig cells, which are considered to be less radiosensitive. This study aims to estimate testicular dose and the associated risks for infertility and hereditary effects from Abdominal and pelvic irradiation. Radiotherapy was simulated on a humanoid phantom using a 15 MV photon beam. Testicular dose was measured for various field sizes and tissue thicknesses along beam axis using an ionization chamber and TLD. For transmission Factor Also common method of measuring the absorbed dose distribution and electron contamination in the build-up region of high-energy beams for radiation therapy is by means of parallel-plate Ionisation chambers. Gonadal dose was reduced by placing lead cups around the testes supplemented by a field edge block. For a tumor dose of 100 cGy, testicular dose was 2.96-8.12 cGy depending upon the field size and the distance from the inferior field edge. The treatment at parameters, the presence of gonad shield and the somatometric characteristics determine whether testicular dose can exceed 1 Gy which allows a complete recovery of spermatogenesis.

Keywords: Absorbed Dose, Abdominal and pelvic, gonads men, Radiotherapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
46 Study on Status and Development of Hydraulic System Protection: Pump Combined With Air Chamber

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar, A. A. Saber

Abstract:

Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems (wps). When transient conditions "water hammer" exists, the life expectancy of the wps can be adversely impacted, resulting in pump and valve failures and catastrophic pipe ruptures. Transient control has become an essential requirement for ensuring safe operation of wps. An accurate analysis and suitable protection devices should be used to protect wps. This paper presents the problem of modeling and simulation of transient phenomena in wps based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occur in the transient. The developed model applied for main wps: pump combined with closed surge tank connected to a reservoir. The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the closed surge tank reduces the unfavorable effects of transients.

Keywords: Flow Transient, Water hammer, Pipeline System, Closed Surge Tank, Simulation Model, Protection Devices, Characteristics Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
45 Aerodynamic Design of Three-Dimensional Bellmouth for Low-Speed Open-Circuit Wind Tunnel

Authors: Harshavardhan Reddy, Balaji Subramanian

Abstract:

A systematic parametric study to find the optimum Bellmouth profile by relating geometric and performance parameters to satisfy a set of specifications is reported. A careful aerodynamic design of Bellmouth intake is critical to properly direct the flow with minimal losses and maximal flow uniformity into the honeycomb located inside the settling chamber of an indraft wind tunnel, thus improving the efficiency of the entire unit. Design charts for elliptically profiled Bellmouth's with two different contraction ratios (9 and 18) and three different test section speeds (25 m/s, 50 m/s, and 75 m/s) were presented. A significant performance improvement - especially in the coefficient of discharge and in the flow angularity and boundary layer thickness at the honeycomb inlet - was observed when an entry corner radius (r/D = 0.08) was added to the Bellmouth profile. The nonuniformity at the honeycomb inlet drops by about three times (~1% to 0.3%) when moving from square to regular octagonal cross-section. An octagonal cross-sectioned Bellmouth intake with L/d = 0.55, D/d = 1.625, and r/D = 0.08 met all the four target performance specifications and is proposed as the best choice for a low-speed wind tunnel.

Keywords: Bellmouth intake, low-speed wind tunnel, coefficient of discharge, nonuniformity, flow angularity, boundary layer thickness, CFD, aerodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
44 Formation of Vasoactive Amines in Dry Fermented Sausage Petrovská Klobása during Drying and Ripening in Traditional and Industrial Conditions

Authors: Tatjana A. Tasić, Predrag M. Ikonić, Ljiljana S. Petrović, Marija R. Jokanović, Vladimir M. Tomović, Branislav V. Šojić, Snežana B. Škaljac

Abstract:

Formation of histamine, tryptamine, phenylethylamine and tyramine (vasoactive amines) in dry fermented sausage Petrovská klobása during drying and ripening in traditional room (B1) and industrial ripening chamber (B3) were investigated. Dansyl chloride derivatized vasoactive amines were determined using HPLC-DAD on Eclipse XDB-C18 column.

Histamine, the most important amine from food safety point of view, was not detected in any analyzed sample. Unlike most of the other fermented sausages, where tyramine is reported as the most abundant amine, in Petrovská klobása tryptamine was the most abundant vasoactive amine in both groups of sausages even though concentrations of tryptamine and tyramine in B3 sausages at the end of ripening were nearly the same (39.8 versus 39.6mg/kg). Sum of vasoactive amines in samples varied from not detected ND (B3) to 176 mg/kg (B1), with concentration of 36.1 (B3) and 73.6 (B1) mg/kg at the end of drying and 96 (B3) and 176 (B1) mg/kg at the end of ripening period. Although the sum of vasoactive amines has increased from the end of drying (45. and 90. day) to the end of ripening period (120. day), during whole production period these values did not exceed 200 mg/kg proposed as possible indicator of hygienic conditions and GMP in the sausage production.

Keywords: Vasoactive amines, traditional dry fermented sausage Petrovská klobása.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4008
43 Production of Energetic Nanomaterials by Spray Flash Evaporation

Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer

Abstract:

Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.

Keywords: Continuous synthesis, energetic material, nanoscale, nanothermite, nanoexplosive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
42 Thermal Behavior of a Ventilated Façade Using Perforated Ceramic Bricks

Authors: H. López-Moreno, A. Rodríguez-Sánchez, C. Viñas-Arrebola, C. Porras-Amores

Abstract:

The ventilated façade has great advantages when compared to traditional façades as it reduces the air conditioning thermal loads due to the stack effect induced by solar radiation in the air chamber. Optimizing energy consumption by using a ventilated façade can be used not only in newly built buildings but also it can be implemented in existing buildings, opening the field of implementation to energy building retrofitting works. In this sense, the following three prototypes of façade where designed, built and further analyzed in this research: non-ventilated façade (NVF); slightly ventilated façade (SLVF) and strongly ventilated façade (STVF). The construction characteristics of the three facades are based on the Spanish regulation of building construction “Technical Building Code”. The façades have been monitored by type-k thermocouples in a representative day of the summer season in Madrid (Spain). Moreover, an analysis of variance (ANOVA) with repeated measures, studying the thermal lag in the ventilated and no-ventilated façades has been designed. Results show that STVF façade presents higher levels of thermal inertia as the thermal lag reduces up to 17% (daily mean) compared to the non-ventilated façade. In addition, the statistical analysis proves that an increase of the ventilation holes size in STVF façades can improve the thermal lag significantly (p >0.05) when compared to the SLVF façade.

Keywords: Energy efficiency, experimental study, statistical analysis, thermal behavior, ventilated façade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4116