From Experiments to Numerical Modeling: A Tool for Teaching Heat Transfer in Mechanical Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
From Experiments to Numerical Modeling: A Tool for Teaching Heat Transfer in Mechanical Engineering

Authors: D. Zabala, Y. Cárdenas, G. Núñez

Abstract:

In this work the numerical simulation of transient heat transfer in a cylindrical probe is done. An experiment was conducted introducing a steel cylinder in a heating chamber and registering its surface temperature along the time during one hour. In parallel, a mathematical model was solved for one dimension transient heat transfer in cylindrical coordinates, considering the boundary conditions of the test. The model was solved using finite difference method, because the thermal conductivity in the cylindrical steel bar and the convection heat transfer coefficient used in the model are considered temperature dependant functions, and both conditions prevent the use of the analytical solution. The comparison between theoretical and experimental results showed the average deviation is below 2%. It was concluded that numerical methods are useful in order to solve engineering complex problems. For constant k and h, the experimental methodology used here can be used as a tool for teaching heat transfer in mechanical engineering, using mathematical simplified models with analytical solutions.

Keywords: Heat transfer experiment, thermal conductivity, finite difference, engineering education.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1056112

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423

References:


[1] W.F. Wu, Y.H. Feng and X.X. Zhang. "Heat transfer analysis during rolling of thin slab in CSP", Acta Metallurgica Sinica (English letters), Vol.19, No.4, 2006, pp. 244-250.
[2] S. H. Han, S.W. Baek, S.H. Kang and C.Y. Kim. "Numerical analysis of heating characteristics of a slab in a bench scale reheating furnace", Int. J. Heat Mass Transfer, Vol.50, No.9-10, 2007, pp. 2019-2023.
[3] A. Jaklic, F.Vode and T. Kolenko. "Online simulation model of the slabreheating process in a pusher-type furnace", Applied Thermal Engineering, Vol.27, No.5-6, 2007, pp. 1105-1114.
[4] S. J. Barnett, M.N. Soutsos S.G. Millard and J.H. Bungey. "Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies", Cement and Concrete Research, Vol.36, No.3, 2006, pp. 434- 440.
[5] L. Zashkova. "Mathematical modelling of the heat behaviour in the ceramic chamber furnaces at different temperature baking curves", Simulation Modelling Practice and Theory, Vol. 16, No.10, 2008, pp. 1640-1658.
[6] M.Y. Kim. "A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace". International Journal of Heat and Mass Transfer, Vol.50, No.19-20, 2007, pp. 3740-3748.
[7] M. Hendrickx, C. Silva, F. Oliveira, P. Tobbacka. Desarrollo de f├│rmulas emp├¡ricas para las temperaturas de esterilizaci├│n ├│ptimas de los alimentos calentados por conducci├│n con estudios de coeficientes de transferencia de calor y método de superficie infinita. Tesis Escuela Superior de Biotecnolog├¡a Dr. Antonio Bernardino de Almeida, Portugal, 2003.
[8] J. Garc├¡a, S. Herv├ís, J. Rico, A. S├ínchez, F. Villatoro. "Comparaci├│n de métodos numéricos para la simulaci├│n de Intercambiadores de Calor enterrados verticales. Aplicaci├│n a intercambiadores de calor enterrados". Anales de ingenier├¡a mec├ínica; Revista de la Asociaci├│n Espa├▒ola de Ingenier├¡a Mec├ínica, a├▒o 15, No.4, 2004, 2481 - 2489.
[9] L. Pati├▒o, Y. Orqu├¡n, J. Urchuengu├¡a, P. De C├│rdoba. "Modelado y soluci├│n numérica de la conducci├│n de calor transitoria en el subsuelo. Aplicaci├│n a intercambiadores de calor enterrados". Anales de ingenier├¡a mec├ínica; Revista de la Asociaci├│n Espa├▒ola de Ingenier├¡a Mec├ínica, a├▒o 15, No.4, 2004, pp. 2509 - 2517
[10] A. Molina. "Problemática actual en la enseñanza de la ingeniería: una alternativa para su solución". Ingenierías, Vol. III, No.7, 2000, (abriljunio).
[11] P. Salcedo. Ingeniería de software educativo, teorías y metodologías que la sustentan, 2002, http:/www.inf.udec.cl.
[12] L. Pineda, X. Arrieta, M. Delgado. "Tecnolog├¡as did├ícticas para la ense├▒anza aprendizaje de la f├¡sica en educaci├│n superior". Télématique, Vol.8, ed. 1, 2009.
[13] J. Delors. Los cuatro pilares de la educaci├│n. Ediciones Unesco, Caracas, 1996.
[14] F. Incropera and D.P. Hewitt. Fundamentos de Transferencia de Calor. México: Prentice Hall, 1999.
[15] A. Mills. Transferencia de calor. Santafé de Bogot├í: McGraw-Hill, 1997.
[16] S.C. Chapra, P.R. Canale. Métodos numéricos para ingenieros. 5th Edition. Caracas: McGraw-Hill, 2007
[17] S. W. Churchill and H.H.S. Chu, "Correlating equations for laminar and turbulent free convection from a horizontal cylinder", Int. J. Heat Mass Transfer, Vol.18, 1975, pp. 1049-1053.