Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Verification of K-ω SST Turbulence Model for Supersonic Internal Flows
Abstract:
In this work, we try to find the best setting of Computational Fluid Dynamic solver available for the problems in the field of supersonic internal flows. We used the supersonic air-toair ejector to represent the typical problem in focus. There are multiple oblique shock waves, shear layers, boundary layers and normal shock interacting in the supersonic ejector making this device typical in field of supersonic inner flows. Modeling of shocks in general is demanding on the physical model of fluid, because ordinary conservation equation does not conform to real conditions in the near-shock region as found in many works. From these reasons, we decided to take special care about solver setting in this article by means of experimental approach of color Schlieren pictures and pneumatic measurement. Fast pressure transducers were used to measure unsteady static pressure in regimes with normal shock in mixing chamber. Physical behavior of ejector in several regimes is discussed. Best choice of eddy-viscosity setting is discussed on the theoretical base. The final verification of the k-ω SST is done on the base of comparison between experiment and numerical results.Keywords: CFD simulations, color Schlieren, k-ω SST, supersonic flows, shock waves.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1082075
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6471References:
[1] Breitkopf, P. and Coelho, R. F. Multidisciplinary design optimization in computational mechanics: Wiley-ISTE, 2010. ISBN-10 1848211384.
[2] Hynek, J. Genetic algorithms and genetic programing (in Czech). Prague : Grada Publishing ,a. s., 2008. ISBN 978-80-247-2695-3.
[3] Dvoř├ík, V. and Kol├íř, J. Shape optimization of supersonic ejectors with several primary nozzles. Lisboa, Portugal : In the 2nd International Conference on Engineering Optimization, 6.-9. september 2010. ISBN 978-989-96264-3-0.
[4] Dvoř├ík, V. Shape optimization of supersonic ejector for supersonic wind tunnel. s.l. : In.: Applied and Computational Mechanics, 2010. pp. 15-24. ISSN 1802-680X.
[5] Kol├íř, J. and ┼áafař├¡k, P. Interaction of oblique shock wave with shear layer. Plzeň : In Proceedings of the International Conference XXVII: Meeting of Departments of Fluid Mechanics and Thermomechanics, 2008. pp. 163-170. ISBN 978-80-7043-666-0.
[6] Moeckel, W. E. Interaction of oblique shock waves with regions of variable pressure, entropy and energy. Washington : NACA, 1952. TN 2725.
[7] Shapiro, A. H. The dynamics and thermodynamics of compressible fluid flow. New York : The Ronald Press Company, 1953. ISBN 0826080758. 8] Versteeg, H. K. and Malalasekera, W. An Introduction to Computational fluid dynamics, The Finite Volume Method: Pearson Education Limited 2007, ISBN 978-0-13-127498-3.
[9] Wilcox, D. Reassessment of the scale determining equation for advanced turbulent models. 1988. AIAA J. 26 (11),1299-1310.
[10] Menter, F. R. Two-equations Eddy-viscosity turbulence models for engineering applications. 1994. AIAA J. 32(8), 1598-1605.
[11] Inc., Fluent. Fluent user documentation. Lebanon : s.n., 2006. from the biography.