Search results for: separable least-squares method.
8008 Numerical Solution of Riccati Differential Equations by Using Hybrid Functions and Tau Method
Authors: Changqing Yang, Jianhua Hou, Beibo Qin
Abstract:
A numerical method for Riccati equation is presented in this work. The method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The operational matrices of derivative and product of hybrid functions are presented. These matrices together with the tau method are then utilized to transform the differential equation into a system of algebraic equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.
Keywords: Hybrid functions, Riccati differential equation, Blockpulse, Chebyshev polynomials, Tau method, operational matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25888007 Preconditioned Jacobi Method for Fuzzy Linear Systems
Authors: Lina Yan, Shiheng Wang, Ke Wang
Abstract:
A preconditioned Jacobi (PJ) method is provided for solving fuzzy linear systems whose coefficient matrices are crisp Mmatrices and the right-hand side columns are arbitrary fuzzy number vectors. The iterative algorithm is given for the preconditioned Jacobi method. The convergence is analyzed with convergence theorems. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.
Keywords: preconditioning, M-matrix, Jacobi method, fuzzy linear system (FLS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19048006 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease
Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.
Keywords: Parkinson's disease, Step method, delay differential equation, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7338005 A Modification on Newton's Method for Solving Systems of Nonlinear Equations
Authors: Jafar Biazar, Behzad Ghanbari
Abstract:
In this paper, we are concerned with the further study for system of nonlinear equations. Since systems with inaccurate function values or problems with high computational cost arise frequently in science and engineering, recently such systems have attracted researcher-s interest. In this work we present a new method which is independent of function evolutions and has a quadratic convergence. This method can be viewed as a extension of some recent methods for solving mentioned systems of nonlinear equations. Numerical results of applying this method to some test problems show the efficiently and reliability of method.
Keywords: System of nonlinear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15938004 Analyzing of Noise inside a Simple Vehicle Cabin using Boundary Element Method
Authors: A. Soltani, M. Karimi Demneh
Abstract:
In this paper, modeling of an acoustic enclosed vehicle cabin has been carried out by using boundary element method. Also, the second purpose of this study is analyzing of linear wave equation in an acoustic field. The resultants of this modeling consist of natural frequencies that have been compared with resultants derived from finite element method. By using numerical method (boundary element method) and after solution of wave equation inside an acoustic enclosed cabin, this method has been progressed to simulate noise inside a simple vehicle cabin.Keywords: Boundary element method, natural frequency, noise, vehicle cabin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25468003 Computing Fractal Dimension of Signals using Multiresolution Box-counting Method
Authors: B. S. Raghavendra, D. Narayana Dutt
Abstract:
In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In addition, some properties of the FD are discussed.Keywords: Box-counting, Fractal dimension, Higuchi method, Katz method, Parametric fractal signals, Sevcik method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45948002 A Schur Method for Solving Projected Continuous-Time Sylvester Equations
Authors: Yiqin Lin, Liang Bao, Qinghua Wu, Liping Zhou
Abstract:
In this paper, we propose a direct method based on the real Schur factorization for solving the projected Sylvester equation with relatively small size. The algebraic formula of the solution of the projected continuous-time Sylvester equation is presented. The computational cost of the direct method is estimated. Numerical experiments show that this direct method has high accuracy.Keywords: Projected Sylvester equation, Schur factorization, Spectral projection, Direct method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18268001 Numerical Solving of General Fuzzy Linear Systems by Huang's Method
Authors: S. J. Hosseini Ghoncheh, M. Paripour
Abstract:
In this paper the Huang-s method for solving a m×n fuzzy linear system when, m≤ n, is considered. The method in detail is discussed and illustrated by solving some numerical examples.
Keywords: Fuzzy number, fuzzy linear systems, Huang's method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12918000 Cubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation
Authors: M. Zarebnia, R. Parvaz
Abstract:
In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 in the solutions show the efficiency of the method computationally.
Keywords: Benjamin-Bona-Mahony-Burgers equation, Cubic Bspline, Collocation method, Finite difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36927999 Two-dimensional Differential Transform Method for Solving Linear and Non-linear Goursat Problem
Authors: H. Taghvafard, G. H. Erjaee
Abstract:
A method for solving linear and non-linear Goursat problem is given by using the two-dimensional differential transform method. The approximate solution of this problem is calculated in the form of a series with easily computable terms and also the exact solutions can be achieved by the known forms of the series solutions. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Several examples are given to demonstrate the reliability and the performance of the presented method.Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23857998 A Comparison of Bias Among Relaxed Divisor Methods Using 3 Bias Measurements
Authors: Sumachaya Harnsukworapanich, Tetsuo Ichimori
Abstract:
The apportionment method is used by many countries, to calculate the distribution of seats in political bodies. For example, this method is used in the United States (U.S.) to distribute house seats proportionally based on the population of the electoral district. Famous apportionment methods include the divisor methods called the Adams Method, Dean Method, Hill Method, Jefferson Method and Webster Method. Sometimes the results from the implementation of these divisor methods are unfair and include errors. Therefore, it is important to examine the optimization of this method by using a bias measurement to figure out precise and fair results. In this research we investigate the bias of divisor methods in the U.S. Houses of Representatives toward large and small states by applying the Stolarsky Mean Method. We compare the bias of the apportionment method by using two famous bias measurements: the Balinski and Young measurement and the Ernst measurement. Both measurements have a formula for large and small states. The Third measurement however, which was created by the researchers, did not factor in the element of large and small states into the formula. All three measurements are compared and the results show that our measurement produces similar results to the other two famous measurements.
Keywords: Apportionment, Bias, Divisor, Fair, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17967997 Fourier Spectral Method for Analytic Continuation
Authors: Zhenyu Zhao, Lei You
Abstract:
The numerical analytic continuation of a function f(z) = f(x + iy) on a strip is discussed in this paper. The data are only given approximately on the real axis. The periodicity of given data is assumed. A truncated Fourier spectral method has been introduced to deal with the ill-posedness of the problem. The theoretic results show that the discrepancy principle can work well for this problem. Some numerical results are also given to show the efficiency of the method.
Keywords: Analytic continuation, ill-posed problem, regularization method Fourier spectral method, the discrepancy principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14987996 Optimal Control of Volterra Integro-Differential Systems Based On Legendre Wavelets and Collocation Method
Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh
Abstract:
In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet together with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.
Keywords: Collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28947995 Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile
Authors: V. Ghadamyari, F. Samadi, F. Kowsary
Abstract:
An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.Keywords: Boundary elements, Conjugate Gradient Method, Inverse Geometry Problem, Sensitivity equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18347994 Discovery of Sequential Patterns Based On Constraint Patterns
Authors: Shigeaki Sakurai, Youichi Kitahata, Ryohei Orihara
Abstract:
This paper proposes a method that discovers sequential patterns corresponding to user-s interests from sequential data. This method expresses the interests as constraint patterns. The constraint patterns can define relationships among attributes of the items composing the data. The method recursively decomposes the constraint patterns into constraint subpatterns. The method evaluates the constraint subpatterns in order to efficiently discover sequential patterns satisfying the constraint patterns. Also, this paper applies the method to the sequential data composed of stock price indexes and verifies its effectiveness through comparing it with a method without using the constraint patterns.
Keywords: Sequential pattern mining, Constraint pattern, Attribute constraint, Stock price indexes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14237993 A Force-directed Graph Drawing based on the Hierarchical Individual Timestep Method
Authors: T. Matsubayashi, T. Yamada
Abstract:
In this paper, we propose a fast and efficient method for drawing very large-scale graph data. The conventional force-directed method proposed by Fruchterman and Rheingold (FR method) is well-known. It defines repulsive forces between every pair of nodes and attractive forces between connected nodes on a edge and calculates corresponding potential energy. An optimal layout is obtained by iteratively updating node positions to minimize the potential energy. Here, the positions of the nodes are updated every global timestep at the same time. In the proposed method, each node has its own individual time and time step, and nodes are updated at different frequencies depending on the local situation. The proposed method is inspired by the hierarchical individual time step method used for the high accuracy calculations for dense particle fields such as star clusters in astrophysical dynamics. Experiments show that the proposed method outperforms the original FR method in both speed and accuracy. We implement the proposed method on the MDGRAPE-3 PCI-X special purpose parallel computer and realize a speed enhancement of several hundred times.Keywords: visualization, graph drawing, Internet Map
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18547992 Iris Localization using Circle and Fuzzy Circle Detection Method
Authors: Marzieh. Savoj, S. Amirhassan. Monadjemi
Abstract:
Iris localization is a very important approach in biometric identification systems. Identification process usually is implemented in three levels: iris localization, feature extraction, and pattern matching finally. Accuracy of iris localization as the first step affects all other levels and this shows the importance of iris localization in an iris based biometric system. In this paper, we consider Daugman iris localization method as a standard method, propose a new method in this field and then analyze and compare the results of them on a standard set of iris images. The proposed method is based on the detection of circular edge of iris, and improved by fuzzy circles and surface energy difference contexts. Implementation of this method is so easy and compared to the other methods, have a rather high accuracy and speed. Test results show that the accuracy of our proposed method is about Daugman method and computation speed of it is 10 times faster.Keywords: Convolution, Edge detector filter, Fuzzy circle, Identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20357991 A Review on Higher Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques
Authors: Maryam Khazaei Pool, Lori Lewis
Abstract:
This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions including Burgers equation, spline functions, and B-spline functions are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.
Keywords: Burgers’ Equation, Septic B-spline, Modified Cubic B-Spline Differential Quadrature Method, Exponential Cubic B-Spline Technique, B-Spline Galerkin Method, and Quintic B-Spline Galerkin Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3627990 Inhibition Kinetic Determination of Trace Amounts of Ruthenium(III) by the Spectrophotometric method with Rhodamine B in Micellar Medium
Authors: Mohsen Keyvanfard
Abstract:
A new, simple and highly sensitive kinetic spectrophotometric method was developed for the determination of trace amounts of Ru(III) in the range of 0.06-20 ng/ml .The method is based on the inhibitory effect of ruthenium(III) on the oxidation of Rhodamine B by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decreasing in absorbance of Rhodamine B at 554 nm with a fixedtime method..The limit of detection is 0.04 ng/ml Ru(III).The relative standard deviation of 5 and 10 ng/ml Ru(III) was 2.3 and 2.7 %, respectively. The method was applied to the determination of ruthenium in real water samplesKeywords: Ruthenium ;Inhibitory; Rhodamine B; bromate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17077989 Estimation of Train Operation Using an Exponential Smoothing Method
Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono
Abstract:
The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.
Keywords: Exponential smoothing method, open data, operation estimation, train schedule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7147988 Power Flow Analysis for Radial Distribution System Using Backward/Forward Sweep Method
Authors: J. A. Michline Rupa, S. Ganesh
Abstract:
This paper proposes a backward/forward sweep method to analyze the power flow in radial distribution systems. The distribution system has radial structure and high R/X ratios. So the newton-raphson and fast decoupled methods are failed with distribution system. The proposed method presents a load flow study using backward/forward sweep method, which is one of the most effective methods for the load-flow analysis of the radial distribution system. By using this method, power losses for each bus branch and voltage magnitudes for each bus node are determined. This method has been tested on IEEE 33-bus radial distribution system and effective results are obtained using MATLAB.
Keywords: Backward/Forward sweep method, Distribution system, Load flow analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175217987 An Expansion Method for Schrödinger Equation of Quantum Billiards with Arbitrary Shapes
Authors: İnci M. Erhan
Abstract:
A numerical method for solving the time-independent Schrödinger equation of a particle moving freely in a three-dimensional axisymmetric region is developed. The boundary of the region is defined by an arbitrary analytic function. The method uses a coordinate transformation and an expansion in eigenfunctions. The effectiveness is checked and confirmed by applying the method to a particular example, which is a prolate spheroid.Keywords: Bessel functions, Eigenfunction expansion, Quantum billiard, Schrödinger equation, Spherical harmonics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52157986 An Analytical Method to Analysis of Foam Drainage Problem
Authors: A. Nikkar, M. Mighani
Abstract:
In this study, a new reliable technique use to handle the foam drainage equation. This new method is resulted from VIM by a simple modification that is Reconstruction of Variational Iteration Method (RVIM). The drainage of liquid foams involves the interplay of gravity, surface tension, and viscous forces. Foaming occurs in many distillation and absorption processes. Results are compared with those of Adomian’s decomposition method (ADM).The comparisons show that the Reconstruction of Variational Iteration Method is very effective and overcome the difficulty of traditional methods and quite accurate to systems of non-linear partial differential equations.
Keywords: Reconstruction of Variational Iteration Method (RVIM), Foam drainage, nonlinear partial differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18127985 Preconditioned Mixed-Type Splitting Iterative Method For Z-Matrices
Authors: Li Jiang, Baoguang Tian
Abstract:
In this paper, we present the preconditioned mixed-type splitting iterative method for solving the linear systems, Ax = b, where A is a Z-matrix. And we give some comparison theorems to show that the convergence rate of the preconditioned mixed-type splitting iterative method is faster than that of the mixed-type splitting iterative method. Finally, we give a numerical example to illustrate our results.Keywords: Z-matrix, mixed-type splitting iterative method, precondition, comparison theorem, linear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12027984 Alternating Implicit Block FDTD Method For Scalar Wave Equation
Authors: N. M. Nusi, M. Othman, M. Suleiman, F. Ismail, N. Alias
Abstract:
In this paper, an alternating implicit block method for solving two dimensional scalar wave equation is presented. The new method consist of two stages for each time step implemented in alternating directions which are very simple in computation. To increase the speed of computation, a group of adjacent points is computed simultaneously. It is shown that the presented method increase the maximum time step size and more accurate than the conventional finite difference time domain (FDTD) method and other existing method of natural ordering.Keywords: FDTD, Scalar wave equation, alternating direction implicit (ADI), alternating group explicit (AGE), asymmetric approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19047983 A Calibration Device for Force-Torque Sensors
Authors: Nicolay Zarutskiy, Roman Bulkin
Abstract:
The paper deals with the existing methods of force-torque sensor calibration with a number of components from one to six, analyzed their advantages and disadvantages, the necessity of introduction of a calibration method. Calibration method and its constructive realization are also described here. A calibration method allows performing automated force-torque sensor calibration both with selected components of the main vector of forces and moments and with complex loading. Thus, two main advantages of the proposed calibration method are achieved: the automation of the calibration process and universality.Keywords: Automation, calibration, calibration device, calibration method, force-torque sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12907982 Coupled Galerkin-DQ Approach for the Transient Analysis of Dam-Reservoir Interaction
Authors: S. A. Eftekhari
Abstract:
In this paper, a numerical algorithm using a coupled Galerkin-Differential Quadrature (DQ) method is proposed for the solution of dam-reservoir interaction problem. The governing differential equation of motion of the dam structure is discretized by the Galerkin method and the DQM is used to discretize the fluid domain. The resulting systems of ordinary differential equations are then solved by the Newmark time integration scheme. The mixed scheme combines the simplicity of the Galerkin method and high accuracy and efficiency of the DQ method. Its accuracy and efficiency are demonstrated by comparing the calculated results with those of the existing literature. It is shown that highly accurate results can be obtained using a small number of Galerkin terms and DQM sampling points. The technique presented in this investigation is general and can be used to solve various fluid-structure interaction problems.
Keywords: Dam-reservoir system, Differential quadrature method, Fluid-structure interaction, Galerkin method, Integral quadrature method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18697981 Discontinuous Galerkin Method for Total Variation Minimization on Inpainting Problem
Authors: Xijian Wang
Abstract:
This paper is concerned with the numerical minimization of energy functionals in BV ( ) (the space of bounded variation functions) involving total variation for gray-scale 1-dimensional inpainting problem. Applications are shown by finite element method and discontinuous Galerkin method for total variation minimization. We include the numerical examples which show the different recovery image by these two methods.Keywords: finite element method, discontinuous Galerkin method, total variation minimization, inpainting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13437980 Numerical Solution of Second-Order Ordinary Differential Equations by Improved Runge-Kutta Nystrom Method
Authors: Faranak Rabiei, Fudziah Ismail, S. Norazak, Saeid Emadi
Abstract:
In this paper we developed the Improved Runge-Kutta Nystrom (IRKN) method for solving second order ordinary differential equations. The methods are two step in nature and require lower number of function evaluations per step compared with the existing Runge-Kutta Nystrom (RKN) methods. Therefore, the methods are computationally more efficient at achieving the higher order of local accuracy. Algebraic order conditions of the method are obtained and the third and fourth order method are derived with two and three stages respectively. The numerical results are given to illustrate the efficiency of the proposed method compared to the existing RKN methods.
Keywords: Improved Runge-Kutta Nystrom method, Two step method, Second-order ordinary differential equations, Order conditions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68507979 On-line and Off-line POD Assisted Projective Integral for Non-linear Problems: A Case Study with Burgers-Equation
Authors: Montri Maleewong, Sirod Sirisup
Abstract:
The POD-assisted projective integration method based on the equation-free framework is presented in this paper. The method is essentially based on the slow manifold governing of given system. We have applied two variants which are the “on-line" and “off-line" methods for solving the one-dimensional viscous Bergers- equation. For the on-line method, we have computed the slow manifold by extracting the POD modes and used them on-the-fly along the projective integration process without assuming knowledge of the underlying slow manifold. In contrast, the underlying slow manifold must be computed prior to the projective integration process for the off-line method. The projective step is performed by the forward Euler method. Numerical experiments show that for the case of nonperiodic system, the on-line method is more efficient than the off-line method. Besides, the online approach is more realistic when apply the POD-assisted projective integration method to solve any systems. The critical value of the projective time step which directly limits the efficiency of both methods is also shown.
Keywords: Projective integration, POD method, equation-free.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355