Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 348

Search results for: Attribute constraint

348 Discovery of Sequential Patterns Based On Constraint Patterns

Authors: Shigeaki Sakurai, Youichi Kitahata, Ryohei Orihara

Abstract:

This paper proposes a method that discovers sequential patterns corresponding to user-s interests from sequential data. This method expresses the interests as constraint patterns. The constraint patterns can define relationships among attributes of the items composing the data. The method recursively decomposes the constraint patterns into constraint subpatterns. The method evaluates the constraint subpatterns in order to efficiently discover sequential patterns satisfying the constraint patterns. Also, this paper applies the method to the sequential data composed of stock price indexes and verifies its effectiveness through comparing it with a method without using the constraint patterns.

Keywords: Sequential pattern mining, Constraint pattern, Attribute constraint, Stock price indexes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
347 Relation between Significance of Attribute Set and Single Attribute

Authors: Xiuqin Ma, Norrozila Binti Sulaiman, Hongwu Qin

Abstract:

In the research field of Rough Set, few papers concern the significance of attribute set. However, there is important relation between the significance of single attribute and that of attribute set, which should not be ignored. In this paper, we draw conclusions by case analysis that (1) the attribute set including single attributes with high significance is certainly significant, while, (2)the attribute set which consists of single attributes with low significance possibly has high significance. We validate the conclusions on discernibility matrix and the results demonstrate the contribution of our conclusions.

Keywords: relation, attribute set, single attribute, rough set, significance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
346 Dynamic Attribute Dependencies in Relational Attribute Grammars

Authors: K. Barbar, M. Dehayni, A. Awada, M. Smaili

Abstract:

Considering the theory of attribute grammars, we use logical formulas instead of traditional functional semantic rules. Following the decoration of a derivation tree, a suitable algorithm should maintain the consistency of the formulas together with the evaluation of the attributes. This may be a Prolog-like resolution, but this paper examines a somewhat different strategy, based on production specialization, local consistency and propagation: given a derivation tree, it is interactively decorated, i.e. incrementally checked and evaluated. The non-directed dependencies are dynamically directed during attribute evaluation.

Keywords: Input/Output attribute grammars, local consistency, logical programming, propagation, relational attribute grammars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
345 Incremental Algorithm to Cluster the Categorical Data with Frequency Based Similarity Measure

Authors: S.Aranganayagi, K.Thangavel

Abstract:

Clustering categorical data is more complicated than the numerical clustering because of its special properties. Scalability and memory constraint is the challenging problem in clustering large data set. This paper presents an incremental algorithm to cluster the categorical data. Frequencies of attribute values contribute much in clustering similar categorical objects. In this paper we propose new similarity measures based on the frequencies of attribute values and its cardinalities. The proposed measures and the algorithm are experimented with the data sets from UCI data repository. Results prove that the proposed method generates better clusters than the existing one.

Keywords: Clustering, Categorical, Incremental, Frequency, Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
344 New Data Reuse Adaptive Filters with Noise Constraint

Authors: Young-Seok Choi

Abstract:

We present a new framework of the data-reusing (DR) adaptive algorithms by incorporating a constraint on noise, referred to as a noise constraint. The motivation behind this work is that the use of the statistical knowledge of the channel noise can contribute toward improving the convergence performance of an adaptive filter in identifying a noisy linear finite impulse response (FIR) channel. By incorporating the noise constraint into the cost function of the DR adaptive algorithms, the noise constrained DR (NC-DR) adaptive algorithms are derived. Experimental results clearly indicate their superior performance over the conventional DR ones.

Keywords: Adaptive filter, data-reusing, least-mean square (LMS), affine projection (AP), noise constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
343 A Design-Based Cohesion Metric for Object-Oriented Classes

Authors: Jehad Al Dallal

Abstract:

Class cohesion is an important object-oriented software quality attribute. It indicates how much the members in a class are related. Assessing the class cohesion and improving the class quality accordingly during the object-oriented design phase allows for cheaper management of the later phases. In this paper, the notion of distance between pairs of methods and pairs of attribute types in a class is introduced and used as a basis for introducing a novel class cohesion metric. The metric considers the methodmethod, attribute-attribute, and attribute-method direct interactions. It is shown that the metric gives more sensitive values than other well-known design-based class cohesion metrics.

Keywords: Object-oriented software quality, object-orienteddesign, class cohesion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
342 Invariant Characters of Tolerance Class and Reduction under Homomorphism in IIS

Authors: Chen Wu, Lijuan Wang

Abstract:

Some invariant properties of incomplete information systems homomorphism are studied in this paper. Demand conditions of tolerance class, attribute reduction, indispensable attribute and dispensable attribute being invariant under homomorphism in incomplete information system are revealed and discussed. The existing condition of endohomomorphism on an incomplete information system is also explored. It establishes some theoretical foundations for further investigations on incomplete information systems in rough set theory, like in information systems.

Keywords: Attribute reduction, homomorphism, incomplete information system, rough set, tolerance relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
341 Fuzzy Decision Making via Multiple Attribute

Authors: Behnaz Zohouri, Mahdi Zowghiand, Mohsen haghighi

Abstract:

In this paper, a method for decision making in fuzzy environment is presented.A new subjective and objective integrated approach is introduced that used to assign weight attributes in fuzzy multiple attribute decision making (FMADM) problems and alternatives and fmally ranked by proposed method.

Keywords: Multiple Attribute Decision Making, Triangular fuzzy numbers, ranking index, Fuzzy Entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
340 Studies on Properties of Knowledge Dependency and Reduction Algorithm in Tolerance Rough Set Model

Authors: Chen Wu, Lijuan Wang

Abstract:

Relation between tolerance class and indispensable attribute and knowledge dependency in rough set model with tolerance relation is explored. After giving definitions and concepts of knowledge dependency and knowledge dependency degree for incomplete information system in tolerance rough set model by distinguishing decision attribute containing missing attribute value or not, the result of maintaining reflectivity, transitivity, augmentation, decomposition law and merge law for complete knowledge dependency is proved. Knowledge dependency degrees (not complete knowledge dependency degrees) only satisfy some laws after transitivity, augmentation and decomposition operations. An algorithm to solve attribute reduction in an incomplete decision table is designed. The correctness is checked by an example.

Keywords: Incomplete information system, rough set, tolerance relation, knowledge dependence, attribute reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
339 An Attribute Based Access Control Model with POL Module for Dynamically Granting and Revoking Authorizations

Authors: Gang Liu, Huimin Song, Can Wang, Runnan Zhang, Lu Fang

Abstract:

Currently, resource sharing and system security are critical issues. This paper proposes a POL module composed of PRIV ILEGE attribute (PA), obligation and log which improves attribute based access control (ABAC) model in dynamically granting authorizations and revoking authorizations. The following describes the new model termed PABAC in terms of the POL module structure, attribute definitions, policy formulation and authorization architecture, which demonstrate the advantages of it. The POL module addresses the problems which are not predicted before and not described by access control policy. It can be one of the subject attributes or resource attributes according to the practical application, which enhances the flexibility of the model compared with ABAC. A scenario that illustrates how this model is applied to the real world is provided.

Keywords: Access control, attribute based access control, granting authorizations, privilege, revoking authorizations, system security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
338 Data-Reusing Adaptive Filtering Algorithms with Adaptive Error Constraint

Authors: Young-Seok Choi

Abstract:

We present a family of data-reusing and affine projection algorithms. For identification of a noisy linear finite impulse response channel, a partial knowledge of a channel, especially noise, can be used to improve the performance of the adaptive filter. Motivated by this fact, the proposed scheme incorporates an estimate of a knowledge of noise. A constraint, called the adaptive noise constraint, estimates an unknown information of noise. By imposing this constraint on a cost function of data-reusing and affine projection algorithms, a cost function based on the adaptive noise constraint and Lagrange multiplier is defined. Minimizing the new cost function leads to the adaptive noise constrained (ANC) data-reusing and affine projection algorithms. Experimental results comparing the proposed schemes to standard data-reusing and affine projection algorithms clearly indicate their superior performance.

Keywords: Data-reusing, affine projection algorithm, error constraint, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
337 Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model

Authors: Siyuan Jing, Kun She

Abstract:

Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.

Keywords: attribute reduction, incomplete data, inconsistent data, tolerance neighborhood relation, rough sets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
336 Subband Adaptive Filter Exploiting Sparsity of System

Authors: Young-Seok Choi

Abstract:

This paper presents a normalized subband adaptive filtering (NSAF) algorithm to cope with the sparsity condition of an underlying system in the context of compressive sensing. By regularizing a weighted l1-norm of the filter taps estimate onto the cost function of the NSAF and utilizing a subgradient analysis, the update recursion of the l1-norm constraint NSAF is derived. Considering two distinct weighted l1-norm regularization cases, two versions of the l1-norm constraint NSAF are presented. Simulation results clearly indicate the superior performance of the proposed l1-norm constraint NSAFs comparing with the classical NSAF.

Keywords: Subband adaptive filtering, sparsity constraint, weighted l1-norm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
335 Attribute Selection Methods Comparison for Classification of Diffuse Large B-Cell Lymphoma

Authors: Helyane Bronoski Borges, JĂșlio Cesar Nievola

Abstract:

The most important subtype of non-Hodgkin-s lymphoma is the Diffuse Large B-Cell Lymphoma. Approximately 40% of the patients suffering from it respond well to therapy, whereas the remainder needs a more aggressive treatment, in order to better their chances of survival. Data Mining techniques have helped to identify the class of the lymphoma in an efficient manner. Despite that, thousands of genes should be processed to obtain the results. This paper presents a comparison of the use of various attribute selection methods aiming to reduce the number of genes to be searched, looking for a more effective procedure as a whole.

Keywords: Attribute selection, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
334 A Family of Entropies on Interval-valued Intuitionistic Fuzzy Sets and Their Applications in Multiple Attribute Decision Making

Authors: Min Sun, Jing Liu

Abstract:

The entropy of intuitionistic fuzzy sets is used to indicate the degree of fuzziness of an interval-valued intuitionistic fuzzy set(IvIFS). In this paper, we deal with the entropies of IvIFS. Firstly, we propose a family of entropies on IvIFS with a parameter λ ∈ [0, 1], which generalize two entropy measures defined independently by Zhang and Wei, for IvIFS, and then we prove that the new entropy is an increasing function with respect to the parameter λ. Furthermore, a new multiple attribute decision making (MADM) method using entropy-based attribute weights is proposed to deal with the decision making situations where the alternatives on attributes are expressed by IvIFS and the attribute weights information is unknown. Finally, a numerical example is given to illustrate the applications of the proposed method.

Keywords: Interval-valued intuitionistic fuzzy sets, intervalvalued intuitionistic fuzzy entropy, multiple attribute decision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
333 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
332 Attribute Weighted Class Complexity: A New Metric for Measuring Cognitive Complexity of OO Systems

Authors: Dr. L. Arockiam, A. Aloysius

Abstract:

In general, class complexity is measured based on any one of these factors such as Line of Codes (LOC), Functional points (FP), Number of Methods (NOM), Number of Attributes (NOA) and so on. There are several new techniques, methods and metrics with the different factors that are to be developed by the researchers for calculating the complexity of the class in Object Oriented (OO) software. Earlier, Arockiam et.al has proposed a new complexity measure namely Extended Weighted Class Complexity (EWCC) which is an extension of Weighted Class Complexity which is proposed by Mishra et.al. EWCC is the sum of cognitive weights of attributes and methods of the class and that of the classes derived. In EWCC, a cognitive weight of each attribute is considered to be 1. The main problem in EWCC metric is that, every attribute holds the same value but in general, cognitive load in understanding the different types of attributes cannot be the same. So here, we are proposing a new metric namely Attribute Weighted Class Complexity (AWCC). In AWCC, the cognitive weights have to be assigned for the attributes which are derived from the effort needed to understand their data types. The proposed metric has been proved to be a better measure of complexity of class with attributes through the case studies and experiments

Keywords: Software Complexity, Attribute Weighted Class Complexity, Weighted Class Complexity, Data Type

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
331 Some Investigations on Higher Mathematics Scores for Chinese University Student

Authors: Xun Ge, Jingju Qian

Abstract:

To investigate some relations between higher mathe¬matics scores in Chinese graduate student entrance examination and calculus (resp. linear algebra, probability statistics) scores in subject's completion examination of Chinese university, we select 20 students as a sample, take higher mathematics score as a decision attribute and take calculus score, linear algebra score, probability statistics score as condition attributes. In this paper, we are based on rough-set theory (Rough-set theory is a logic-mathematical method proposed by Z. Pawlak. In recent years, this theory has been widely implemented in the many fields of natural science and societal science.) to investigate importance of condition attributes with respective to decision attribute and strength of condition attributes supporting decision attribute. Results of this investigation will be helpful for university students to raise higher mathematics scores in Chinese graduate student entrance examination.

Keywords: Rough set, higher mathematics scores, decision attribute, condition attribute.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923
330 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm, to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: Rough Set Theory, Attribute Reduction, Fuzzy Logic, Memetic Algorithms, Record to Record Algorithm, Great Deluge Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
329 Optimal Solution of Constraint Satisfaction Problems

Authors: Jeffrey L. Duffany

Abstract:

An optimal solution for a large number of constraint satisfaction problems can be found using the technique of substitution and elimination of variables analogous to the technique that is used to solve systems of equations. A decision function f(A)=max(A2) is used to determine which variables to eliminate. The algorithm can be expressed in six lines and is remarkable in both its simplicity and its ability to find an optimal solution. However it is inefficient in that it needs to square the updated A matrix after each variable elimination. To overcome this inefficiency the algorithm is analyzed and it is shown that the A matrix only needs to be squared once at the first step of the algorithm and then incrementally updated for subsequent steps, resulting in significant improvement and an algorithm complexity of O(n3).

Keywords: Algorithm, complexity, constraint, np-complete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
328 A Combined Cipher Text Policy Attribute-Based Encryption and Timed-Release Encryption Method for Securing Medical Data in Cloud

Authors: G. Shruthi, Purohit Shrinivasacharya

Abstract:

The biggest problem in cloud is securing an outsourcing data. A cloud environment cannot be considered to be trusted. It becomes more challenging when outsourced data sources are managed by multiple outsourcers with different access rights. Several methods have been proposed to protect data confidentiality against the cloud service provider to support fine-grained data access control. We propose a method with combined Cipher Text Policy Attribute-based Encryption (CP-ABE) and Timed-release encryption (TRE) secure method to control medical data storage in public cloud.

Keywords: Attribute, encryption, security, trapdoor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490
327 Combining Variable Ordering Heuristics for Improving Search Algorithms Performance

Authors: Abdolreza Hatamlou, Yusef Farhang, Mohammad Reza Meybodi

Abstract:

Variable ordering heuristics are used in constraint satisfaction algorithms. Different characteristics of various variable ordering heuristics are complementary. Therefore we have tried to get the advantages of all heuristics to improve search algorithms performance for solving constraint satisfaction problems. This paper considers combinations based on products and quotients, and then a newer form of combination based on weighted sums of ratings from a set of base heuristics, some of which result in definite improvements in performance.

Keywords: Constraint Satisfaction Problems, Variable Ordering Heuristics, Combination, Search Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
326 Examining the Value of Attribute Scores for Author-Supplied Keyphrases in Automatic Keyphrase Extraction

Authors: Vicky Min-How Lim, Siew Fan Wong, Tong Ming Lim

Abstract:

Automatic keyphrase extraction is useful in efficiently locating specific documents in online databases. While several techniques have been introduced over the years, improvement on accuracy rate is minimal. This research examines attribute scores for author-supplied keyphrases to better understand how the scores affect the accuracy rate of automatic keyphrase extraction. Five attributes are chosen for examination: Term Frequency, First Occurrence, Last Occurrence, Phrase Position in Sentences, and Term Cohesion Degree. The results show that First Occurrence is the most reliable attribute. Term Frequency, Last Occurrence and Term Cohesion Degree display a wide range of variation but are still usable with suggested tweaks. Only Phrase Position in Sentences shows a totally unpredictable pattern. The results imply that the commonly used ranking approach which directly extracts top ranked potential phrases from candidate keyphrase list as the keyphrases may not be reliable.

Keywords: Accuracy, Attribute Score, Author-supplied keyphrases, Automatic keyphrase extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165
325 Further Investigations on Higher Mathematics Scores for Chinese University Students

Authors: Xun Ge

Abstract:

Recently, X. Ge and J. Qian investigated some relations between higher mathematics scores and calculus scores (resp. linear algebra scores, probability statistics scores) for Chinese university students. Based on rough-set theory, they established an information system S = (U,CuD,V, f). In this information system, higher mathematics score was taken as a decision attribute and calculus score, linear algebra score, probability statistics score were taken as condition attributes. They investigated importance of each condition attribute with respective to decision attribute and strength of each condition attribute supporting decision attribute. In this paper, we give further investigations for this issue. Based on the above information system S = (U, CU D, V, f), we analyze the decision rules between condition and decision granules. For each x E U, we obtain support (resp. strength, certainty factor, coverage factor) of the decision rule C —>x D, where C —>x D is the decision rule induced by x in S = (U, CU D, V, f). Results of this paper gives new analysis of on higher mathematics scores for Chinese university students, which can further lead Chinese university students to raise higher mathematics scores in Chinese graduate student entrance examination.

Keywords: Rough set, support, strength, certainty factor, coverage factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
324 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
323 A Multi-Attribute Utility Model for Performance Evaluation of Sustainable Banking

Authors: Sonia Rebai, Mohamed Naceur Azaiez, Dhafer Saidane

Abstract:

In this study, we develop a performance evaluation model based on a multi-attribute utility approach aiming at reaching the sustainable banking (SB) status. This model is built accounting for various banks’ stakeholders in a win-win paradigm. In addition, it offers the opportunity for adopting a global measure of performance as an indication of a bank’s sustainability degree. This measure is referred to as banking sustainability performance index (BSPI). This index may constitute a basis for ranking banks. Moreover, it may constitute a bridge between the assessment types of financial and extra-financial rating agencies. A real application is performed on three French banks.

Keywords: Multi-attribute utility theory, Performance, Sustainable banking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
322 Sensory Evaluation of the Selected Coffee Products Using Fuzzy Approach

Authors: M.A. Lazim, M. Suriani

Abstract:

Knowing consumers' preferences and perceptions of the sensory evaluation of drink products are very significant to manufacturers and retailers alike. With no appropriate sensory analysis, there is a high risk of market disappointment. This paper aims to rank the selected coffee products and also to determine the best of quality attribute through sensory evaluation using fuzzy decision making model. Three products of coffee drinks were used for sensory evaluation. Data were collected from thirty judges at a hypermarket in Kuala Terengganu, Malaysia. The judges were asked to specify their sensory evaluation in linguistic terms of the quality attributes of colour, smell, taste and mouth feel for each product and also the weight of each quality attribute. Five fuzzy linguistic terms represent the quality attributes were introduced prior analysing. The judgment membership function and the weights were compared to rank the products and also to determine the best quality attribute. The product of Indoc was judged as the first in ranking and 'taste' as the best quality attribute. These implicate the importance of sensory evaluation in identifying consumers- preferences and also the competency of fuzzy approach in decision making.

Keywords: fuzzy decision making, fuzzy linguistic, membership function, sensory evaluation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
321 A Hybrid Search Algorithm for Solving Constraint Satisfaction Problems

Authors: Abdel-Reza Hatamlou, Mohammad Reza Meybodi

Abstract:

In this paper we present a hybrid search algorithm for solving constraint satisfaction and optimization problems. This algorithm combines ideas of two basic approaches: complete and incomplete algorithms which also known as systematic search and local search algorithms. Different characteristics of systematic search and local search methods are complementary. Therefore we have tried to get the advantages of both approaches in the presented algorithm. The major advantage of presented algorithm is finding partial sound solution for complicated problems which their complete solution could not be found in a reasonable time. This algorithm results are compared with other algorithms using the well known n-queens problem.

Keywords: Constraint Satisfaction Problem, Hybrid SearchAlgorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196
320 Evaluation of Attribute II Bt Sweet Corn Resistance and Reduced-Risk Insecticide Applications for Control of Corn Earworm

Authors: R. Weinzierl, R. Estes, N. Tinsley, M. Keshlaf

Abstract:

The corn earworm, Helicoverpa zea Boddie, is a serious pest of corn. Larval feeding in ear tips destroys kernels and allows growth of fungi and production of mycotoxins. Infested sweet corn is not marketable. Development of improved transgenic hybrids expressing insecticidal toxins from Bacillus thuringiensis (Bt) may limit or prevent crop losses. The effectiveness of Attribute® II Bt resistance and applications of Voliam Xpress insecticide were evaluated for effectiveness in controlling corn earworm in plots near Urbana, IL, USA, in 2013. Where no insecticides were applied, ear infestations and kernel damage in Attribute® II ‘Protector’ plots were consistently lower (near zero) than in plots of the non-Bt isoline ‘Garrison.’ Multiple applications of Voliam Xpress significantly reduced the number of corn earworm larvae and kernel damage in the Garrison plots, but infestations and damage in these plots were greater than in Protectorplots that did not receive insecticide applications. Our results indicate that Attribute® II Bt resistance is more effective than multiple applications of an insecticide for preventing losses caused by corn earworm in sweet corn.

Keywords: Bacillus thuringiensis, Helicoverpa zea, insect pest management, transgenic sweet corn.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
319 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach

Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti

Abstract:

From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.

Keywords: Self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642