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Abstract—A numerical method for Riccati equation is presented in
this work. The method is based on the replacement of unknown func-
tions through a truncated series of hybrid of block-pulse functions and
Chebyshev polynomials. The operational matrices of derivative and
product of hybrid functions are presented. These matrices together
with the tau method are then utilized to transform the differential
equation into a system of algebraic equations. Corresponding nu-
merical examples are presented to demonstrate the accuracy of the
proposed method.
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I. INTRODUCTION

IN this paper, a numerical method using hybrid of block-
pulse functions and Chebyshev polynomials is presented

for the following Riccati differential equation

u′(x) = p(x) + q(x)u(x) + r(x)u2(x), 0 ≤ x ≤ X (1)

with initial value
u(0) = a. (2)

These kinds of differential equations are a class of nonlinear
differential equations of much importance, and play a signif-
icant role in many fields of applied science[1]. For example,
as is known, a one-dimensional static Schrödinger equation
is closely related to a Riccati differential equation. Solitary
wave solution of a nonlinear partial differential equation can
be expressed as polynomial in two elementary functions satis-
fying a projective Riccati equation [2]. The Riccati differential
equation is also one of the central objects of present day
control theory. In fact, in the theory of control systems, the
qualitative control problem has received considerable research
interest. This problem is regarded as an extension of the
classical result of on controllability and stability of linear
systems which is relevant to such differential equations [3]
. Riccati differential equations also play predominant roles
in other control theory problems such as dynamic games,
linear systems with Markovian jumps, and stochastic control.
Another application is found in Kalman filtering systems [4]
such as orbiting satellites, seasonal phenomena like river flows,
and econometric models, etc. Thus, the solution methods for
these equations are of great importance to engineers and
scientists. Although many important differential equations can
be solved by well known analytical techniques, a greater
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number of physically significant differential equations can not
be solved. Therefore, one has to go for numerical techniques
or approximate approaches for getting its solution. Recently,
Adomian decomposition method(ADM) has been proposed for
solving Riccati differential equations in [5], [6].Abbasbandy
solved Riccati differential equations using He’s variational
iteration method(VIM), homopoty perturbation method(HPM)
and iterated He’s homotopy perturbation method and com-
pared the accuracy of the obtained solution with the derived
by Adomian decomposition method[7], [8], [9]. Gülsu applied
Taylor matrix method(TMM) to solve Riccati differential
equations[10]. Furthermore, Legendre wavelet method was
used to solved quadratic Riccati differential equations in[11].
But few papers reported application of hybrid function to solve
the Riccati differential equation.

In this paper, we introduce a new numerical method to solve
Riccati differential equations. The method consists of reducing
the differential equations to a set of algebraic equations by
expanding the solution as hybrid functions with unknown
coefficients. The operational matrices of derivative and product
of hybrid functions are given. These matrices together with
the tau method are then utilized to evaluate the unknown
coefficients and find approximate solutions for u(x).

II. PROPERTIES OF HYBRID FUNCTIONS

A. Hybrid functions of block-pulse and Chebyshev polynomi-
als

Hybrid functions hnm(x), n = 1, 2, · · · , N,m =
0, 1, 2, · · · ,M − 1, are defined on the interval[0, 1) as

hnm(x) =
{

T (2Nx − 2n + 1), x ∈ [n−1
N , n

N );
0, otherwise. (3)

Here,Tm(x)are the well-known Chebyshev polynomials of
order m which satisfy following recursion formula:

T0(x) = 1, T1(x) = x,

Tm+1(x) = 2xTm(x) − Tm−1(x).

The derivative of Chebyshev polynomials is a linear com-
bination of lower order Chebyshev polynomials, in fact [13]

{
T ′

m(x) = 2m
∑m−1

k=1 Tk(x), m even;
T ′

m(x) = 2m
∑m−1

k=1 Tk(x) + mT0(x), m odd.
(4)
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B. Function approximation

A function u(x) defined over the interval 0 to 1 may be
expanded as

u(x) =
∞∑

n=1

∞∑

m=0

cnmhnm(x) (5)

where
cnm = (u(x), hnm(x))

in which (., .)denotes the inner product. If u(x) in (5) is
truncated, then (5) can be written as

u(x) ≈
N∑

n=1

M−1∑

m=0

cnmhnm(x) = CT H(x) = HT (x)C (6)

where C and H(x) are MN × 1matrices given by

C = [c10, c11, · · · , c1M−1, c20, c21, · · · ,
c2M−1, · · · , cN0, cNM−1]T

(7)

H(x) = [h10(x), · · · , h1M−1(x), h20(x), · · · ,
h2M−1(x), · · · , hN0, · · · , hNM−1(x)]T .

(8)

In (7) and (8), cnm, n = 1, 2, · · · , N,m = 0, 1, 2, · · · ,M −
1 are the coefficients expansions of the function u(x)in the
nth subinterval[n−1

N , n
N ) and hnm(x), n = 1, 2, · · · , N,m =

0, 1, 2, · · · ,M − 1 are defined in (3).

C. Operational matrix of derivative

In the following we introduce a new method for deriving
operational matrix of derivative for hybrid function.

Theorem 1: The derivative of the vector H(x) defined in
(8) can be expressed by

dH(x)/dx = DH(x) (9)

where Dis the MN × MNmatrix of derivative as follow

D =

⎛

⎜
⎜
⎜
⎝

F 0 · · · 0
0 F · · · 0
...

...
. . .

...
0 0 · · · F

⎞

⎟
⎟
⎟
⎠

in which F is the M × Mmatrix. And its (i, j) element is
defined as follow

F (i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

2N · 2(i − 1), i odd,j = 2, 4, 6, · · · , i − 1;
2N · (i − 1), i even,j = 1;
2N · 2(i − 1), i even,j = 3, 5, 7, · · · , i − 1;
0, otherwise.

proof:
In the interval [n−1

N , n
N ], n = 1, 2, · · · , N ,we can know

hnm(x) = Tm(2Nx− 2n + 1),m = 0, 1, 2, · · · ,M − 1 (10)

By differentiation with respect to x in (10) we have

h′
nm(x) = T ′

m(2Nx − 2n + 1)

Applying(4) we get

h′
nm(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4mN
m−1∑

k=1

Tk(2Nx − 2n + 1), m even;

4mN
m−1∑

k=1

Tk(2Nx − 2n + 1)+

2NmT0(2Nx − 2n + 1)
, m odd.

(11)
This function h′

nm(x),m = 0, 1, 2, · · · ,M − 1 is zero out-
side the interval[n−1

N , n
N ], hence its hybrid functions expansion

only have those elements of basis hybrid functions in H(x)
that are nonzero in the interval [n−1

N , n
N ], i.e. hnm(x),m =

0, 1, 2, · · · ,M − 1 . So, its hybrid functions expansion has the
following form

h′
nm(x) =

{
2m · 2N

∑m−1
k=1 hnk(x), m even;

2m · 2N
∑m−1

k=2 hnk(x) + 2Nmhn0(x), m odd.

So,we can get

F (i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

2N · 2(i − 1), i odd,j = 2, 4, 6, · · · , i − 1;
2N · (i − 1), i even,j = 1;
2N · 2(i − 1), i even,j = 3, 5, 7, · · · , i − 1;
0, otherwise.

D. The product operational matrix of the hybrid of block-
pulse functions and Chebyshev polynomials

The following property of the product of two hybrid func-
tion vectors will also be used. Let

H(x)HT (x)C = C̃H(x) (12)

where

C = (c10, c11, · · · c1M−1, · · · , cN0 · · · cNM−1)T

C̃ = diag(C̃1, C̃2, · · · , C̃N )

is a MN × MN product operational matrix.And,C̃i, i =
1, 2, 3, · · · , N are M × Mmatrices given in[12]

III. SOLUTION OF RICCATI DIFFERENTIAL EQUATION

Consider (1), we approximate p(x), q(x), r(x) by the way
mentioned in Section3 as

p(x) = PT H(x),

q(x) = QT H(x),

r(x) = RT H(x).

Now, we assume that

u(x) = CT H(x) (13)

By using (9) we have

u′(x) = CT DH(x)

With substituting in (1) we have

CT DH(x) = PT H(x) + QT H(x) · HT (x)C
+RT H(x) · CT H(x) · HT (x) · C

Applying (12) we get

CT DH(x) = PT H(x) + QT C̃H(x) + CT C̃R̃H(x). (14)
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The residual R(x)for (1)can be written as

R(x) = CT DH(x)− PT H(x)−QT C̃H(x)−CT C̃R̃H(x).
(15)

As in a typical tau method, we generate NM − 1 equations
by applying

∫ 1

0

hj(x)R(x) = 0, j = 1, 2, · · · , NM − 1

where hj(x) = hnm(x)defined in (3) and

j = (n−1)M+(m+1), n = 1, 2, · · · , N,M = 0, 1, 2, · · · ,M−1.

Also, by substituting initial condition (2), we have

u(0) = CT H(0) = a. (16)

Equation (15)and (16) generate NM set of nonlinear equa-
tions. These equations can be solved for unknown coefficients
of the vector C.

IV. ACCURACY OF SOLUTION

We can easily verify the accuracy of the method. Given that
the truncated hybrid function in (6) is an approximate solution
of (1), it must have approximately satisfied these equations.
Thus, for each xi ∈ [0, X]

E(xi) = CT DH(xi) − p(xi) − q(xi) · CT H(xi)
−r(xi) · CT C̃ · H(xi) ≈ 0

If max E(xi) = 10−k(k is any positive integer) is prescribed,
then the truncation limit N, M are increased until the dif-
ference at each of the points xi becomes smaller than the
prescribed.

Proposition 4.1: Let u(x) ∈ Hk(−1, 1) (Sobolev space)
uN (x) =

∑N
i=0 aiTi(x) be the best approximation polynomial

of in L2
ω-norm. Thus, the truncation error is:

‖u(x) − uN (x)‖L2
ω [−1,1] ≤ C0N

−k‖u(x)‖Hk(−1,1)

where C0 is a positive constant, which is dependent on the
selected norm and independent of y(x) and N (proof [14]).

Theorem 2: Let u(x) ∈ Hk(0, 1), In = [n−1
N , n

N ]then

‖u(x) − uNM (x)‖L2
ω [0,1] ≤ C0N

−k max
0≤n≤N

‖u(x)‖Hk(In)

By using of Proposition 4.1 it is obvious[15].

V. NUMERICAL EXAMPLES

In this section, we applied the method proposed in this paper
to solve three test problems. To show the efficiency of the
present method for our problem in comparison with the exact
solution we evaluate our absolute error defined by

ENM (x) = |u(x) − uNM (x)|,
where u(x) is the exact solution, and uNM (x) is the approx-
imate solution.
Example1. Let us first consider the Riccati differential equa-
tion {

u′(x) = 1 − u2(x), 0 ≤ x ≤ 1;
u(0) = 0.

TABLE I
ABSOLUTE ERROR IN u(x) FOR DIFFERENT VALUES OF N, M FOR

EXAMPLE1

x N = 1, M = 6 N = 2, M = 6 N = 3, M = 6
0 0 0 0

0.1 1.5904e-004 1.8804e-006 4.1401e-007
0.2 1.8375e-004 4.4248e-006 6.0186e-007
0.3 1.6514e-004 6.9937e-006 7.3747e-007
0.4 1.4753e-004 9.6184e-006 1.7323e-007
0.5 1.3908e-004 1.2314e-006 6.8524e-007
0.6 1.2918e-004 2.5904e-006 7.9810e-007
0.7 1.0992e-004 4.4563e-006 9.2621e-007
0.8 9.0561e-005 6.7831e-006 2.8318e-007
0.9 9.0893e-005 8.3251e-006 6.6469e-007
1.0 9.9844e-005 9.5567e-006 7.2660e-007

TABLE II
COMPARISON OF THE ABSOLUTE ERROR OF EXAMPLE2

x Euler method TMM(N = 6) Proposed method
0.1 1.31046e-002 2.94100e-006 5.2700e-004
0.2 1.85470e-002 1.48756e-004 5.2820e-004
0.3 2.04833e-002 1.97190e-003 4.0012e-004
0.4 2.07262e-001 1.11989e-002 3.2721e-004
0.5 2.01354e-002 4.14865e-002 2.7498e-004

The exact solution is

u(x) =
e2x − 1
e2x + 1

.

Table 1 shows the numerical results for Example 1 with N =
1, 2, 3,M = 6.
Example2.As the second example consider Riccati differential
equation[10]:

{
u′(x) = u(x) − 2u2(x),
u(0) = 1.

We use hybrid function method for solving this equation with
N = 1,M = 6. Comparison are made between Taylor matrix
method and Euler method and proposed method in Table2.
The results reveal that the proposed method is very effective.
Example3.As the third example consider Riccati differential
equation[5], [7], [8], [9]:

{
u′(x) = 1 + 2u(x) − u2(x), 0 ≤ x ≤ 4
u(0) = 0.

The exact solution of this problem is

u(x) = 1 +
√

2tanh(
√

2 +
log(−1 +

√
2)/(1 +

√
2)

2
)

We use hybrid function method for solving this equation
withN = 4,M = 10 and the solution is obtained in the
interval [0,4]. Fig.1 shows the exact solution versus approx-
imate solution obtained from the proposed method, ADM,10
iterations, VIM, 3 iterations, and HPM, 5 iterations in the
interval [0,1.5]. As this figure shows ADM,VIM and HPM
are very much inaccurate for solving the nonlinear Riccati
differential equation, especially out of the interval [0,1].
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0 0.5 1 1.5
−4

−2

0

2

4

6

8

x

u(
x)

Exact
Presented method
ADM
HPM
VIM

Fig. 1. The solutions solved by different methods in Example3.

VI. CONCLUSION

In this paper we have presented a numerical method to
solve the Riccati differential equation using the hybrid block-
pulse functions and Chebyshev polynomials. The properties
of hybrid functions and the collocation method are used to
reduce the equation to the solution of algebraic equations. The
accuracy of the proposed method, other mentioned methods
and exact solution are compared in Table2 and Fig.1. It is
clearly seen that our numerical solutions are good agreement
with the exact. Consequently, hybrid function method is very
simple easy to implement and is able to approximate the
solution more accurate in a bigger interval when compared to
other discussed methods. The advantages of hybrid functions
are that the values of N and M are adjustable as well as being
able to yield more accurate numerical solutions. Also hybrid
functions have good advantage in dealing with piecewise
continuous functions.
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