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Abstract—The POD-assisted projective integration method based
on the equation-free framework is presented in this paper. The method
is essentially based on the slow manifold governing of given system.
We have applied two variants which are the “on-line” and “off-line”
methods for solving the one-dimensional viscous Bergers’ equation.
For the on-line method, we have computed the slow manifold by
extracting the POD modes and used them on-the-fly along the
projective integration process without assuming knowledge of the
underlying slow manifold. In contrast, the underlying slow manifold
must be computed prior to the projective integration process for the
off-line method. The projective step is performed by the forward
Euler method. Numerical experiments show that for the case of non-
periodic system, the on-line method is more efficient than the off-line
method. Besides, the online approach is more realistic when apply
the POD-assisted projective integration method to solve any systems.
The critical value of the projective time step which directly limits the
efficiency of both methods is also shown.

Keywords—Projective integration, POD method, Equation-free.

I. INTRODUCTION

Today, computer simulation via differential equation models
has become a very useful part of research areas such as
engineering, physics, chemistry, biology, social sciences, and
the economics of human systems. The results of computer sim-
ulation do not only allow researchers to gain insights into the
operation of those systems, but also provide a visualization of
fundamental behavior regarding problems of interest. Although
it can provide us with many good predictions of complex
phenomena, the computational time required to achieve this
is, in general, very large. Thus, most of the calculations are
usually performed on high-performance computers, parallel
or grid computing. Nevertheless, it remains impractical in
many practical problems from both computing and data-
handling viewpoints. It is necessary to employ a simpler
model that also embraces all key phenomena from the original
models. The benefits of inventing these reduced-order models
are twofold. First, there would be the ability to perform
simulations and accurately predict complex phenomena with
much lower computing needs. The second benefit would be the
ability to directly comprehend complex phenomena from these
reduced-order models without mining data sets obtained from
traditional simulations. There are many developments trying to
address this issue. Currently, many reduced-order models or
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low-dimensional models have been proposed by researchers
in many research fields; see [1], [13], [16]–[18], [24], for
example.

The proper orthogonal decomposition (POD) method is
one of the well-known methods used for creating a low-
dimensional model. It is a powerful tool based on statistical
analysis. It is able to identify low-dimensional descriptions
(both on a spatial/temporal dominant basis or structures) for
multidimensional systems (see [2]) and utilizes these structures
to build a robust low-dimensional model. Used with the
method of snapshots, first proposed in [23] for flow systems,
the POD method becomes particularly effective and easy to
implement. Moreover, the POD method has been successfully
implemented in conjunction with both experimental and nu-
merical studies for a wide range of applications.

In this paper, we explore both the on-line and the off-line
POD-assisted projective integration methodology that employs
“equation-free” projective integration frameworks, pioneered
by I.G. Kevrekidis et al. [7]. This framework has been applied
to a variety of problems, ranging from the bifurcation analysis
of complex systems to the homogenization of random media
[8], [11], [12], [19], [20], [25]. The basic idea operates at two
levels:

(a) design and perform short-time numerical experiments
with “the best available” microscopic model, then

(b) use the numerical results of such microscopic compu-
tations to estimate quantities (residuals, action of Jacobians)
required in numerical computations of the macroscopic equa-
tions for the coarse-grained system behavior [6].

A similar POD-assisted projective integration approach has
been successfully applied to solve the Navier-Stokes equation
[22]. However, in this current work, we perform POD-assisted
projective integration without assuming knowledge of the
underlying slow manifold in the integration process. We need
to compute the underlying slow manifold for every large
projective integration step (see a full definition in the method-
ologies section). Thus the POD modes must be computed on-
the-fly while we are marching the numerical solution in time.
This is called the “on-line” method. Full details of the on-
line method are given in Section II-B. Moreover, we have
presented the projective integral method based on [22], which
is called the “off-line” method since the POD modes are
known prior to integration process. From the application point
of view, the on-line method is more practical than the off-line
method. It can be applied to solve any complex systems with
some modifications of the existing computer code. Moreover,
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the approach can also be used to study the dynamics and
interactions of the underlying slow manifold of any given
systems as well.

In summary, in this current work, we focus on three aspects
of the POD-assisted projective integration approach:

• An examination of the effectiveness of the approach in
numerically solving a nonlinear PDE if the POD modes
are not available a priori for the projective integration
process.

• An investigation of solution dynamic represented by each
POD mode.

• A comparison of the on-line and off-line methods.

The paper is organized as follows. In Section 2, we present
the algorithms of the POD-assisted projective integration and
related methodologies. The analysis of the accuracy of the
projective forward Euler method is demonstrated in Section 3.
Numerical results from the on-line and the off-line methods
are presented in Section 4, where the one-dimensional viscous
Burgers’ equation is used as the illustrative prototype. We
provide a brief discussion and summary in Section 5.

II. METHODOLOGIES

A. Proper orthogonal decomposition

The Proper Orthogonal Decomposition (POD) procedure
extracts empirical orthogonal features from any ensemble of
data. This linear procedure produces a useful reduced basis
set that is optimal in the L2 sense. In the POD framework for
continuous problems [2], we can represent a flow field u(t,x)
as follows:

u(t,x) =
∞∑

k=0

ak(t)φk(x), (1)

where {φk(x)} is the set of POD bases determined by first
determining the {ak(t)} from the eigenvalue problem∫

A

C(t, t′)ak(t′)dt′ = λ̂kak(t) , t ∈ A , (2)

where {ak(t)} is the set of temporal modes, A is a specified
time interval, and C(t, t′) is the correlation function defined
by

C(t, t′) =

∫
Ω

u(t,x) · u(t′,x)dx. (3)

The POD basis is thus defined by

φk(x) =

∫
A

ak(t)u(t,x)dt, ∀k. (4)

The non-negative definiteness of the correlation function (3)
allows us to order the eigenvalues and the corresponding POD
modes by λ̂k ≥ λ̂k+1. The POD expansion coefficients for
(1) can be found from ak =< u(t,x), φk(x) >. Here <, >
denotes the inner product operator in the L2 sense.

B. POD-assisted projective integration

The projective integration technique allows us to integrate
numerical solutions forward in time using only two processes:
restriction and lifting. We introduce the definitions of these

processes by using two operators: a restriction operator R
and a lifting operator L such that

a(t) = Ru(t,x) ≡ {< u(t,x), φk(x) >, t ∈ A, ∀k}, (5)

and

u(t,x) = La(t) ≡
∞∑

k=0

ak(t)φk(x) . (6)

In a discrete computation, we can approximate (1) using K
terms of POD expansion. The representation can be expressed
as

uK(t,x) =

K∑
k=1

ak(t)φk(x), (7)

and the truncated restriction and truncated lifting operators
are defined as RK and LK , respectively. The convergence of
the K-terms POD expansion is assumed to be in the form of

‖u− uK‖ → K−γ , as K → ∞, (8)

where the convergence rate, γ > 0, is sufficiently large.
In general, we can write the evolution of the POD coefficient

a(t) using
da
dt

= g(a(t)) , (9)

where the explicit form of g may remain unknown. Thus, the
derivative of the POD coefficients must be approximated rather
than explicitly evaluated, in order to march forward in time.
Note that we can find an explicit form of g by projecting the
governing PDEs onto the POD modes [3], [4], [9], [10], [15],
[21].

In this study, the “fine-scale” simulator gives a fully resolved
solution of Burgers’ equation using the standard Fourier spec-
tral method. The “coarse-grained” model is that of solution
dynamics (from initial conditions) on the slow manifold; the
dynamics are �observed on only the first few POD modes that
parametrize this manifold.

In general, one large POD-assisted projective integration
step to march the system from t = tn to t = tn+1 consists of
the following substeps:

1) Fine-scale computation: Solve Burgers’ equation for a
short period of time for tn ≤ t ≤ tnc = tn + nfδt.
The computation is conducted via the standard Fourier
spectral method with a small time step δt. Here, the
local relaxation time (nfδt) is assumed to be shorter
than the typical coarse-grained flow time scale (substep
3, below).

2) Restriction: Derive the POD coefficients using the pre-
viously saved solutions from the previous step, i.e.,
solve the eigenvalue problem (2) and estimate the time
derivatives da/dt at t = tn

c .
3) Projective integration: March a(t) from tn to tn+1 using

any standard ODE technique to obtain a(tn+1). The time
step here is Δtc ≡ ncδt = tn+1− tnc , where nc ≥ nf ≥
1.

4) Lifting: At t = tn+1, reconstruct the solution
uK(tn,x) = LKa(tn) for a specific number of POD
modes, K .
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5) Return to substep 1. Note that the solution from substep
4 is set to an initial condition for the next fine-scale
computation. Repeat the computation until the final time
is reached.

Further details of substeps 2, 3, and 4 are given below.
1) Restriction and lifting: We employ the snapshot method

to extract the set of POD bases {φk(x)} from the ensemble of
previously saved solutions [23]. In the fine-scale time interval,
the solution snapshots u(ti,x) at time ti are obtained by
solving Burgers’ equation using an accurate spectral method
where tn ≤ ti ≤ tnc , i = 1, .., nf . From (4), the POD bases
are then determined discretely by

φk(x) =

nf∑
i=1

ak(ti)u(ti,x) dt, ∀k. (10)

where {ak} are obtained by solving the correlation matrix (2).
Once the POD basis functions are determined from (10), we
can restrict any solution u(t,x) for any given t to obtain the
corresponding POD coefficients ak from (5). The derivative
of POD coefficients can then be approximated and used to
march forward in time via the projective integration technique
(see below). The lifting procedure is the reverse process of
restriction, i.e., for a given set of computed POD coefficients
at time t, we can reconstruct the corresponding solution by
using (6).

2) Projective integration: The projective integration proce-
dure is described as follows:

• Approximate the RHS of (9) at t = tn
c via

g(tnc ) =

ne∑
j=0

αja(tj) =
da
dt

(tnc ) + O
(
δtJf

)
, (11)

where 1 ≤ ne ≤ nf , tj = tnc − jδt, and Jf denotes
the order of the approximation. Here, {α j}ne

j=0
is a

set of consistent coefficients such that
∑

αjf(tj) =
df/dt(tnc ) + O(δtJf ).

• Once the RHS of the typical reduced-order model (9)
is estimated numerically, we can effectively integrate it
via standard ODE solvers. For instance, given a coarse
time step Δtc ≡ ncδt where nc ≥ 1, such that tn+1 =
tnc + Δtc = tn + (nf + nc)δt, the single-step forward
Euler projective integrator takes the form

a(tn+1) = a(tnc ) + Δtc · g(tnc ) + O(Δt2c). (12)

It should be noted that other higher-order explicit integration
schemes (possibly implicit ones) can be used as well. For
instance, we can use the following scheme:

a(tn+1) = a(tnc ) +

Jc∑
k=1

(Δtc)
k

k!

∂(k−1)

∂tk−1
g(tnc ) + O(ΔtJc+1

c ).

(13)
The higher-order temporal derivatives of g(t) are approxi-
mated in a way similar to (11). Note that (13) is a high-order
single-step method.

C. Projective Forward Euler Method (PFE)

The global time for projective integrators are composed of
two types of integrators: fine-scale integrator and coarse-scale
integrator. We start the computations via fine-scale integration
with nf time steps and then perform coarse-scale integration
with nc time steps. In this study, fine-scale integration is
performed using the Fourier spectral method, whereas coarse-
scale integration is carried out using the single-step forward
Euler method. Here, we apply the Euler method in order to
check the stability of the PFE method by comparing it with
some predictions from linear stability analysis. Details of the
analysis will be presented in the next section. Following [5],
we divide the computational stages in the PFE method into
several steps, as follows.

1. Use a suitable fine-scale integrator to integrate the solu-
tions for nf time steps, say from tn to tnc .

2. Approximate da/dt at t = tn
c .

3. Perform outer integration with nc steps using dy/dt at
time t = tnc via

an+nf +nc = (nc + 1)an+nf
− ncan+nf−1 .

Here, we approximate da/dt at time t = tn
c via the Euler

method at points nf and nf − 1.

III. ACCURACY OF THE PFE METHOD

A. Accuracy of the PFE method

Recently, a detailed analysis of the consistency and accuracy
of the “off-line” POD-assisted projective integration method
has been presented in [22]. The resultant analysis can be
applied to the proposed (“on-line”) method. The main results
are summarized here as follows.

Let vn+1 and un+1 be an exact solution and numerical so-
lution, respectively, at time tn+1 . Suppose that we employ one
step of the PFE method with K POD modes to approximate
the exact solution in one global time step Δt = Δtc + Δtf .
The error from the approximation un+1

K against the exact flow
field v at any time tn+1 can be written as:

εT =
∥∥un+1

K − v(tn+1)
∥∥

≤ ∥∥un+1

K − vK(tn+1)
∥∥

+
∥∥vK(tn+1) − v(tn+1)

∥∥
∼ Δtf εf + O

(
Δt2c

)
+ O

(
δtJf

)
+O

(
K−γ

)
(14)

The total error εT is composed of four error terms on the
RHS of (14). εf ∼ O(δtp, hq) is the error from the fine-
scale computation. The second term is the error from the
coarse-scale computation. The third term is the error due to
the approximation of g(a(t)), which is not known exactly in
closed-form formulae, and the last term is the error from the
convergence of POD representations.

For very accurate fine-scale computation, we obtain
O(Δtf ) � O(Δt). Thus, the dominant error terms arise from
the last three terms. In the case of a highly effective method,
nc must be large, so the error term O(Δt2

c) dominates other
error terms, and it grows very rapidly when we march the
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numerical solution in time. However, for a large K , the error
from approximation of the (9) at t = tn

c can dominate other
error terms because of aliasing. A technique like non-uniform
sampling near t = tn

c could be used as a remedy for this
situation. In practice, the appropriate values of Δtc and Δtf

providing the most efficient PFE method are not known in
advance. One way to analyze the relation between Δtc and
Δtf is to use the concept of linear stability. A detailed analysis
of this method will be given in the next subsection.

IV. NUMERICAL RESULTS

In order to demonstrate the PFE method, Burgers’ equation,
which is a simple one-dimensional model of the Navier-Stokes
equations, is chosen as a demonstration model. Fine-scale
computation is performed by the Fourier spectral method.
Some details of the method are summarized as follows.

The one-dimensional viscous Burgers’ equation for un-
known u(x, t) can be written as

ut + νuxx + uux = 0 , 0 ≤ x ≤ L (15)

where L is a given computational domain, and ν is the
viscosity effect.

Let û be the discrete Fourier transform of u, defined by

û(k, t) = F (u) =
1

N

N−1∑
j=0

u(xj , t) exp(−ikxj) ,

−p ≤ k ≤ p − 1 ,

where p and N are the number of Fourier modes and dis-
cretization points of x, respectively. Applying the discrete
inverse Fourier transform, we obtain

u(xj , t) = F−1(u) =

p−1∑
k=−p

û(k, t) exp(ikxj) ,

0 ≤ j ≤ 2p − 1

where F and F−1 respectively denote the discrete Fourier
transform and the inverse Fourier transform.

In discrete form, (15) can be written as

ut(xj , t) = −F−1
{
F (u2)ik/2

}
+ F−1

{
νk2F (u)

}
,

0 ≤ j ≤ 2p − 1. (16)

Let u = [u(x0, t), u(x1, t), ..., u(x2p−1, t)]
T , and (16) can

be written as the system of ODEs at the collocation points:

ut = R(u) . (17)

To reduce the computational time, we apply the discrete
fast Fourier transform (FFT) algorithm to the RHS of (17).
We march forward in time by using the classical Runge–Kutta
method. Hence, the problem can now be solved numerically
subject to appropriate boundary conditions.

The solution u(x, t) represents a traveling wave along a flat
horizontal bottom in the domain 0 < x < L. The boundary
conditions can be approximated as u(0, t) = u(L, t) = 0 for
t > 1, whereas the initial condition is given by

u(x, 1) =
x

1 + exp[ 1

4ν (x2 − 1

4
)]

, 0 < x < L . (18)

This problem has an exact solution (see [14]) in the form of

u(x, t) =
x/t

1 + (t/t0)1/2 exp(x2/4νt)
, t ≥ 1 , (19)

where t0 = exp(1/8ν). The solution represents a nonlinear
wave propagating to the right with decreasing amplitude due
to the viscosity effect. The viscosity effect is set at ν = 0.005
for all cases of our simulations. It is noted that our current
investigtion focuses on non-periodic system. We will apply
the PFE method and check its accuracy by comparing the
numerical solutions with the exact solutions at various times
in the next section.

A. Numerical results of the PFE method

The evolution of traveling wave profiles u(x, t) is shown in
Figure 1. The horizontal axis represents the x domain, while
the vertical axis represents the wave amplitude. The solid and
the dashed lines depict the exact solutions and the numerical
solutions, respectively. Here, we set the number of POD modes
from K = 1 to K = 4, the inner time step at nf = 5, and
the outer time step at nc = 5. Cases of larger outer time step
nc = 10 are shown in Figure 2.

To investigate the accuracy of the PFE method, we define
three forms of error as follows.

Etj =
1

N

{
N∑

i=1

∣∣∣∣qexact(i, tj) − qapprox(i, tj)

qexact(i, tj)

∣∣∣∣
}

Eavg =
1

Tn

⎧⎨
⎩

nt∑
j=1

Etj Δt

⎫⎬
⎭ ,

and ETn =
1

N

{
N∑

i=1

∣∣∣∣qexact(i, Tn) − qapprox(i, Tn)

qexact(i, Tn)

∣∣∣∣
}

,

where N is the number of mesh points, nt is the number of
time steps, and Tn = nt · δt is the final time. Thus, Eavg is
the accumulation of averaged error measured at the final time
step, and Etj is the averaged error at an arbitrary time tj .

In Figure 1, we apply relatively small outer time step,
nc = 5. The numerical results at each time step are in good
agreement with the exact solutions when we use the number of
POD mode K = 3, 4. When K = 1, the numerical results are
clearly incorrect. This impiles that we use not enough number
of POD mode in the online PFE method in order detect the
dynamics of solution in time and also means that the first POD
mode responsibles for the actual mean flow, and the second
POD mode responsibles for the flow speed. In our simulations,
we need to increase more number of POD mode to increase
accuracy of numerical solutions. We found that it is enough
to use K = 3, 4 and 5 in the simulations run by the PFE
method.

In Figure 2, we apply relatively large outer time step,
nc = 10. The numerical results at each time step are in good
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Fig. 1. Evolution of traveling wave profiles u(x, t) by PFE method with
POD modes K = 1 to 4 and nc = 5.

agreement with the exact solutions when we use the number
of POD mode K = 3, 4 but relative error still appears. Using
K = 2 can improve dynamic solutions but with large error.
In this case, the dominant error is contributed from the coarse
scale time step in the PFE method. Moreover, this error term
gets large when we continue to increase nc. Figure 3 shows the
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Fig. 2. Evolution of traveling wave profiles u(x, t) by PFE method with
POD modes K = 1 to 4 and nc = 10.

numerical results when nc = 13 with K = 5, the numerical
solution is clearly incorrect at the early time step but the PFE
method can recover inaccurate solution to be accurate solution
when longer time step calculated. This is an important feature
of the PFE method studied in our work that it can adapt the
solution in time during marching. So, this method is sometimes
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called ’on-line’ method or projective integration performed on
the fly.
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Fig. 3. Evolution of traveling wave profiles u(x, t) by PFE method with
POD modes K = 5 and nc = 13.

The relationships between the number of POD modes K and
the errors are shown in Figure 4. When fixing K , it was found
that the errors Eavg and ETn increase as nc increases. That
is, the accuracy of the PFE method decreases as the coarse
time step increases. In this case, the dominant error term is
the truncation error of O(Δt2

c) on the RHS of (14).
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Fig. 4. Relationship between the number of POD modes K and averaged
error Eavg , and ETn

We can see the effect of K by fixing both nc and nf

and varying K . It can be seen from Figure 4 that the errors
decrease as K increases, or equivalently, that we have used a
sufficient number of POD modes for the expected convergence

and desired accuracy to be obtained. This conclusion can be
made only if nc ≤ 13. We can see in the case of a relatively
large value of nc (nc ≥ 14) that the error is very large even if
we use many K . In this case, the error term from the coarse-
scale computation is much larger than the error term from the
POD convergence. This then directly affects all computations,
resulting in a divergence of the numerical solutions.

B. Numerical results of off-line projective integration

In this section, we apply equation-free projective integration
based on [22] to solve the same problem. This method is
referred to as “off-line” because the POD modes are known
prior to the computation. In this method, we need to employ a
large number of snapshots to make sure that the POD modes
have been fully resolved by the method of snapshots [23]. POD
modes are extracted from the solution ensemble and will be
later used in the restriction and lifting processes. In the current
study, we use 80 snapshots in the solution ensemble. These
POD modes govern simulation dynamics in entire integration
period.

The concept of the off-line projective integration method is
different from the on-line method that in the latter POD modes
are computed on-the-fly. This means that POD modes are
obtained by extracting nf snapshots from the DNS simulations
for each large projective integration step. However, off-line
projective integration method uses the POD modes computed
prior to the integration process. This is the main difference
between the on-line and the off-line projective integration
processes.

To investigate the efficiency of the off-line method, all
parameters ν, dt, and nf are chosen to be the same values
as in the numerical experiments of the on-line method. The
evolution of traveling wave profiles u(x, t) is shown in Figure
5. Here, the number of POD modes are K = 1, 5, 10 and
20, the inner time step is nf = 5, and the outer time step
is nc = 5. Similar to the study of on-line PFE method, the
off-line projective integration with only the first POD mode is
not enough to represent the solution accurately. The accuracy
of the solution is obtained as we have increase K to K = 20.
However, increasing number of POD modes used in the off-
line projective integration to be more than K = 20 can result
in unstability in the method eventhough by including more
higher modes can lead to a more accurate solution. This is
because the approximation to derivatives in projection step
of highly fluctuated mode is very poor and the approximation
error is also greatly amplified. Thus using these high modes in
POD-assisted projective integration is not feasible in practice.

The case of a larger time step with nc = 13 with K = 40
is shown in Figure 6. For the numerical experiments we have
found that this value of nc is the possible highest possible
value for the current off-line projective integration and it is
close to that of on-line one.

The relationship between averaged error E avg and the num-
ber of POD modes K of the off-line method is shown in
Figure 7. We have shown four cases of nc: 5, 10, 15, and
20. For nc = 5 (relatively small jump in the projective step),
we can see that the averaged error decreases as the number
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Fig. 5. Evolution of traveling wave profiles u(x, t) by PFE method with
POD modes K = 1, 5, 10 and 20 with nc = 5

of POD modes increases. This is similar to what we have
observed in the results of the on-line projective integration. As
K increases, the error does not decrease, because the higher
POD modes (K > 40) contribute very little to the accuracy of
the solution, or equivalently, they possess very small energy
when compared to the lower modes. The accuracy of the
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Fig. 6. Evolution of traveling wave profiles u(x, t) by PFE method with
POD modes K = 40 and nc = 13

numerical results in the case of nc = 10 is similar to that
in the case of nc = 5. However, in the case of larger step
with nc = 15, the averaged error is relatively large compared
to the previous cases. The averaged error does not decrease
with increasing K . Moreover, the numerical solution diverges
as K becomes too large. This is becuase the truncation error
of the coarse time-scale computation dominates in the case of
large nc, leading to the instability of the method. As we can
see, the numerical solution diverges very rapidly in the case
of nc = 20.
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Fig. 7. Relationship between POD modes K and averaged error Eavg for
the off-line projective integration.

TABLE I
AVERAGED ERRORS OF ON-LINE AND OFF-LINE

nc On-line Off-line

5 0.01587 0.05062
8 0.02451 0.06337
10 0.04387 0.06887
12 0.04011 0.07564
13 0.04481 0.10307

Table I shows the comparison of averaged errors between
the on-line and the off-line PFE methods. For the same value
of outer time step, the on-line projective integration provides
results with higher accuracy compared to those of the off-line
projective integration. The on-line projective integration can
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precisely detect solution dynamics while the off-line projective
integration may miss some features if such features have not
been observed in solution ensemble. In the on-line projective
integration, the numerical solutions can be updated at the
fine step and then used to construct the corresponding POD
modes during the time integration. From this results and
the implementation point of view we can see that the on-
line projective integration method is rather efficient than the
off-line projective integration method. However, the costs of
repeatingly computed in on-line projective integration method
should be assess before applying such aprroach to solve any
given systems.

V. CONCLUSIONS

In this paper, we have applied both the on-line and off-
line POD-assisted projective integration methods to solve nu-
merically the one-dimensional viscous Burgers’ equation. The
methods compose of two time-scale computations: fine-scale
and coarse-scale. The fine-scale computation is performed by
the Fourier spectral method, and the coarse-scale computation
or the projective integration is carried out using the first-order
forward Euler method.

The main objective of this study was to investigate the
efficiency of the on-line projective integration method as well
as compare that to the off-line projective integration method.
Various sets of numerical experiments have been carried out.
The stability of the method was investigated numerically. It
was found that the method is stable when the coarse time step
is small, while it is unstable when the coarse time step is
large. This results in a large truncation error in the projective
integration where the increment of representative POD modes
cannot reduce the total error.

In general, we can also apply the higher-order integrator
as the coarse-scale integrator; for instance, we can use the
fourth-order single-step Runge–Kutta method or the multi-
step predictor-corrector method. This would result in a more
effective method. We have investigated the efficiency of the
presented methods by changing from the first-order forward
Euler method to be the second-order forward Euler method. It
is found that averaged errors decreases but it is not significant
and still be the same order of accuracy. When we increase
the number of POD modes for both the on-line and off-
line projective integration methods, the second-order methods
are unstable because we have included high POD modes
having high frequency for approximating time derivative at
the projective step. Thus, using just first-order method would
be efficient method in case of combinations of many POD
modes.

In the current work, although we have applied a method for
solving the prototype viscous Burgers’ equation, the method
can be extended to any dissipative PDEs. The important
limitation of the method is that the projected domain must
rely on the existence of a relatively low-dimensional model or
attracting slow manifolds parametrized by the representative
POD modes. In complex systems such as atmospheric or
ocean system, time spent in the fine scale computation step
can necessarily be much longer which directly affects the

overall efficiency of the proposed method. More research
which includes time required in fine scale computation step,
longest projection time step as well as optimal number of POD
modes is still needed in order to achieve the highest efficiency
and stability regarding this method as it is being applied to
solve such systems.
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hierarchy of low-dimensional models for the transient and post-transient
cylinder wake. J. Fluid Mech., 497:335–363, 2003.

[16] J. Rambo and Y. Joshi. Reduced-order modeling of turbulent forced
convection with parametric conditions. International Journal of Heat
and Mass Transfer, 50(3-4):539–551, 2007.

[17] S.S. Ravindran. A reduced-order approach for optimal control of
fluids using proper orthogonal decomposition. International Journal
for Numerical Methods in Fluids, 34(5):425–448, 2000.

[18] D. Rempfer. Low-dimensional modeling and numerical simulation of
transition in simple shear flows. Annual Review of Fluid Mechanics,
35:229–265, 2003.

[19] R. Rico-Martinez, C.W. Gear, and I.G. Kevrekidis. Coarse projective
kMC integration: forward/reverse initial and boundary value problems.
J. Comput. Phys., 196:474–489, 2004.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:5, No:7, 2011 

991International Scholarly and Scientific Research & Innovation 5(7) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:5
, N

o:
7,

 2
01

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
99

.p
df



[20] L. Russo, C.I. Siettos, and I.G. Kevrekidis. Reduced computations
for nematic-liquid crystals: A timestepper approach for systems with
continuous symmetries. Journal of Non-Newtonian Fluid Mechanics,
146(1-3):51–58, 2007.

[21] S. Sirisup and G.E. Karniadakis. A spectral viscosity method for
correcting the long-term behavior of POD models. J. Comput. Phys.,
194(1):92–116, 2004.

[22] S. Sirisup, G.E. Karniadakis, D. Xiu, and I.G. Kevrekidis. Equation-
free/galerkin-free pod-assisted computation of incompressible flows. J.
Comput. Phys., 207(2):568–587, 2005.

[23] L. Sirovich. Turbulence and the dynamics of coherent structures, Parts
I, II and III. Quart. Appl. Math., XLV:561–590, 1987.

[24] M. Samimy et. al. Feedback control of subsonic cavity flows using
reduced-order models. J. Fluid Mech., 579:315–346, 2007.

[25] D. Xiu, I.G. Kevrekidis, and R. Ghanem. An equation-free, multiscale
approach to uncertainty quantification. Computing in Science and
Engineering, 7(3):16–23, 2005.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:5, No:7, 2011 

992International Scholarly and Scientific Research & Innovation 5(7) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:5
, N

o:
7,

 2
01

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
99

.p
df


	v79-1.pdf
	v79-2.pdf
	v79-3.pdf
	v79-4.pdf
	v79-5.pdf
	v79-1.pdf
	v79-2.pdf
	v79-3.pdf
	v79-4.pdf
	v79-5.pdf
	v79-6.pdf
	v79-7.pdf
	v79-8.pdf
	v79-9.pdf
	v79-10.pdf

	v79-6.pdf
	v79-7.pdf
	v79-8.pdf
	v79-9.pdf
	v79-10.pdf
	v79-11.pdf
	v79-12.pdf
	v79-13.pdf
	v79-14.pdf
	v79-15.pdf
	v79-16.pdf
	v79-17.pdf
	v79-18.pdf
	v79-19.pdf
	v79-20.pdf
	v79-21.pdf
	v79-22.pdf
	v79-23.pdf
	v79-24.pdf
	v79-25.pdf
	v79-26.pdf
	v79-27.pdf
	v79-28.pdf
	v79-29.pdf
	v79-30.pdf
	v79-31.pdf
	v79-32.pdf
	v79-33.pdf
	v79-34.pdf
	v79-35.pdf
	v79-36.pdf
	v79-37.pdf
	v79-38.pdf
	v79-39.pdf
	v79-40.pdf
	v79-41.pdf
	v79-42.pdf
	v79-43.pdf
	v79-44.pdf
	v79-45.pdf
	v79-46.pdf
	v79-47.pdf
	v79-48.pdf
	v79-49.pdf
	v79-50.pdf
	v79-51.pdf
	v79-52.pdf
	v79-53.pdf
	v79-54.pdf
	v79-55.pdf
	v79-56.pdf
	v79-57.pdf
	v79-58.pdf
	v79-59.pdf
	v79-60.pdf
	v79-61.pdf
	v79-62.pdf
	v79-63.pdf
	v79-64.pdf
	v79-65.pdf
	v79-66.pdf
	v79-67.pdf
	v79-68.pdf
	v79-69.pdf
	v79-70.pdf
	v79-71.pdf
	v79-72.pdf
	v79-73.pdf
	v79-74.pdf
	v79-75.pdf
	v79-76.pdf
	v79-77.pdf
	v79-78.pdf
	v79-79.pdf
	v79-80.pdf
	v79-81.pdf
	v79-82.pdf
	v79-83.pdf
	v79-84.pdf
	v79-85.pdf
	v79-86.pdf
	v79-87.pdf
	v79-88.pdf
	v79-89.pdf
	v79-90.pdf
	v79-91.pdf
	v79-92.pdf
	v79-93.pdf
	v79-94.pdf
	v79-95.pdf
	v79-96.pdf
	v79-97.pdf
	v79-98.pdf
	v79-99.pdf
	v79-100.pdf
	v79-101.pdf
	v79-102.pdf
	v79-103.pdf
	v79-104.pdf
	v79-105.pdf
	v79-106.pdf
	v79-107.pdf
	v79-108.pdf
	v79-109.pdf
	v79-110.pdf
	v79-111.pdf
	v79-112.pdf
	v79-113.pdf
	v79-114.pdf
	v79-115.pdf
	v79-116.pdf
	v79-117.pdf
	v79-118.pdf
	v79-119.pdf
	v79-120.pdf
	v79-121.pdf
	v79-122.pdf
	v79-123.pdf
	v79-124.pdf
	v79-125.pdf
	v79-126.pdf
	v79-127.pdf
	v79-128.pdf
	v79-129.pdf
	v79-130.pdf
	v79-131.pdf
	v79-132.pdf
	v79-133.pdf
	v79-134.pdf
	v79-135.pdf
	v79-136.pdf
	v79-137.pdf
	v79-138.pdf
	v79-139.pdf
	v79-140.pdf
	v79-141.pdf
	v79-142.pdf
	v79-143.pdf
	v79-144.pdf
	v79-145.pdf
	v79-146.pdf
	v79-147.pdf
	v79-148.pdf
	v79-149.pdf
	v79-150.pdf
	v79-151.pdf
	v79-152.pdf
	v79-153.pdf
	v79-154.pdf
	v79-155.pdf
	v79-156.pdf
	v79-157.pdf
	v79-158.pdf
	v79-159.pdf
	v79-160.pdf
	v79-161.pdf
	v79-162.pdf
	v79-163.pdf
	v79-164.pdf
	v79-165.pdf
	v79-166.pdf
	v79-167.pdf
	v79-168.pdf
	v79-169.pdf
	v79-170.pdf
	v79-171.pdf
	v79-172.pdf
	v79-173.pdf
	v79-174.pdf
	v79-175.pdf
	v79-176.pdf
	v79-177.pdf
	v79-178.pdf
	v79-179.pdf
	2Edison Muzenda.pdf
	2Z. Pooranian.pdf
	A. Benhizia.pdf
	A. Derardja r.pdf
	A. Derardja.pdf
	A. G. Silva Sobrinho.pdf
	A. Maruta.pdf
	A.H.Sajedi Pour.pdf
	A.K.BHANDARI.pdf
	A.L.Deghal.pdf
	Ali Baladi.pdf
	Ali Reza Sahab.pdf
	ALI SAMADI AFSHAR.pdf
	Amir Gholami Pastaki.pdf
	An Luling.pdf
	Andras Szekrenyes.pdf
	Athanasios T.pdf
	Avadhesh Yadav.pdf
	Ayo S. Afolabi.pdf
	Azmi Zakaria1.pdf
	Basant Kumar1.pdf
	Berna Ulutas.pdf
	Bum-June Seo.pdf
	Byung-Ju Kim.pdf
	BYUNG-SOO.pdf
	C. A. Gilkeson.pdf
	C. Alexandru.pdf
	Chang Soo Kang.pdf
	Chien-Chun Kung.pdf
	Christopher C.pdf
	Ciceron Berbecaru1.pdf
	D. Im.pdf
	D.Toghraie.pdf
	Danielle Reichel.pdf
	David Lávicka.pdf
	De Lellis.pdf
	Devesa-Rey.pdf
	Ding Guo-hao.pdf
	Dmitry S. Sitnikov.pdf
	E.Assareh.pdf
	E.V. Butila.pdf
	Edison Muzenda.pdf
	ENSONNNC. C. Su.pdf
	Esmaeil Poursaeidi2.pdf
	Esmaeil Poursaeidi.pdf
	Ezgi Dündar-Tekkaya.pdf
	F. Karami.pdf
	Fahimeh Golestani.pdf
	Fariba Jafari.pdf
	Gholamreza Habibi.pdf
	Golnaz Rezai.pdf
	Golubeva.pdf
	H. Sajjadi.pdf
	H. V. Chen.pdf
	hanieh panahi paper.pdf
	Haoyu Ma.pdf
	Hongyu Wei.pdf
	Hsiu-hui Lin.pdf
	HYUNG-TAEKpdf.pdf
	Ifeyinwa E.pdf
	Ingy A. El-Khouly.pdf
	J. Hassan.pdf
	J. Hodicky.pdf
	J. Skrovan.pdf
	Jana Doležalová.pdf
	Javad Marzbanrad.pdf
	Jay M. Joshi.pdf
	Jeeoot Singh.pdf
	Jianfeng Li.pdf
	Jihyung Kim.pdf
	Jong-Won Lee.pdf
	Kambiz Tahvildari.pdf
	Kamran Safavi.pdf
	Karam Y.pdf
	Kibaek Kim.pdf
	Kyoungjin Kim.pdf
	Leila Vafajoo.pdf
	Li-Chung Su.pdf
	Liu Jian-xia.pdf
	lJianfeng Li.pdf
	Lobat Taghavi.pdf
	M. AlSawalha.pdf
	M. Daoudi.pdf
	M. H. Nagrial.pdf
	M. K. Bhatt.pdf
	M. Khalid Imran.pdf
	M.N. KHAN.pdf
	M.R. Ebrahimi.pdf
	Madihah Mohd Saudi.pdf
	Manasi Pathade.pdf
	marco.pdf
	Marius Gheju.pdf
	Michaela Skulinova.pdf
	Michal Javornik.pdf
	Mihai Lungu.pdf
	Mikhail Semenov.pdf
	Mikko Mäkelä.pdf
	Ming-Hsun Tsai.pdf
	Minsu Seol.pdf
	M-J. Huang.pdf
	Mohamad Mahdavi.pdf
	Mohammad Mirabi.pdf
	Mohammad Najafi Nobar.pdf
	Monika Neda.pdf
	Morteza Abbaszadeh.pdf
	Motalleb Byzedi.pdf
	Muniyandy Elangovan.pdf
	N. Aldea.pdf
	N. Benachour.pdf
	N. Dahbi2.pdf
	N. Dahbi3.pdf
	N. Dahbi.pdf
	N. Khatiashvili.pdf
	N. Poomsa.pdf
	Nahid Ghasemi.pdf
	Nao-Aki Noda.pdf
	Nebojsa B. Raicevic.pdf
	Neslihan Yuca 2.pdf
	Neslihan Yuca.pdf
	Nisar Ahmed Memon.pdf
	Noor Asma Husain.pdf
	Noor Azlina Mohd Salleh.pdf
	Nor Maniha Abdul Ghani.pdf
	P I Jagad.pdf
	P. Heribanová.pdf
	P. K. Padhy.pdf
	P.M. Álvarez.pdf
	Pham Thu Thuy.pdf
	Phoevos K. Koukouvinis.pdf
	PoiSim Khiew.pdf
	Qimin Yang.pdf
	R. Hosseini.pdf
	R. Sahraian.pdf
	Raoudha CHAABANE.pdf
	Riki Mukhaiyar.pdf
	Rincon L. David.pdf
	ROMAN-NOVAK.pdf
	Ruili Zhou.pdf
	S.Asadi.pdf
	Said Rabah Azzam.pdf
	Sandra Ondrušová.pdf
	Saqib Mahmood,.pdf
	Seyed Fazel Ziaei Asl.pdf
	Shakila Motamedi.pdf
	Shan Ding.pdf
	Shuenn-Yih Chang.pdf
	Shweta Shah.pdf
	Sohrab Khanmohammadi.pdf
	Songtao Wu.pdf
	Sreedevi Radhakrishnan.pdf
	Susana G.pdf
	T.K. Tan.pdf
	TABLOBahareh Amirjabbari.pdf
	Tadashi Watanabe.pdf
	Tanveer A. Khan.pdf
	V. K. Singh.pdf
	V. Rednic.pdf
	Wajdi Ghezaiel.pdf
	Wang Wen-long.pdf
	Wei Chen.pdf
	Wen-Chi Hung.pdf
	Wen-liang Chen.pdf
	Wenyu Song.pdf
	Xiaochuan Chen.pdf
	Y. H. Tsai.pdf
	Y. J. Huang2.pdf
	Y. J. Huang.pdf
	Y. Outaleb.pdf
	Y. Rostamiyan.pdf
	Yang Xiaoliang.pdf
	Yen-Yu Chen.pdf
	Yeon-kug Moon.pdf
	Yu Zhang.pdf
	Yung-Yuan Hsu.pdf
	Z. Pooranian.pdf
	Z. Veselý.pdf
	Zia Abbas.pdf
	Zilong He.pdf
	Zongqing Lu.pdf

	v79-181.pdf
	v79-195.pdf

