Preconditioned Jacobi Method for Fuzzy Linear Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33104
Preconditioned Jacobi Method for Fuzzy Linear Systems

Authors: Lina Yan, Shiheng Wang, Ke Wang

Abstract:

A preconditioned Jacobi (PJ) method is provided for solving fuzzy linear systems whose coefficient matrices are crisp Mmatrices and the right-hand side columns are arbitrary fuzzy number vectors. The iterative algorithm is given for the preconditioned Jacobi method. The convergence is analyzed with convergence theorems. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

Keywords: preconditioning, M-matrix, Jacobi method, fuzzy linear system (FLS).

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087892

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904

References:


[1] S. Abbasbandy, R. Ezzati, A. Jafarian, LU decomposition method for solving fuzzy system of linear equations, Appl. Math. Comput. 172 (2006) 633-643.
[2] S. Abbasbandy, A. Jafarian, Steepest descent method for system of fuzzy linear equations, Appl. Math. Comput. 175 (2006) 823-833.
[3] S. Abbasbandy, A. Jafarian, R. Ezzati, Conjugate gradient method for fuzzy symmetric positive definite system of linear equations, Appl. Math. Comput. 171 (2005) 1184-1191.
[4] T. Allahviranloo, Numerical methods for fuzzy system of linear equations, Appl. Math. Comput. 155 (2004) 493-502.
[5] T. Allahviranloo, Successive over relaxation iterative method for fuzzy system of linear equations, Appl. Math. Comput. 162 (2005) 189-196.
[6] T. Allahviranloo, The Adomian decomposition method for fuzzy system of linear equations, Appl. Math. Comput. 163 (2005) 553-563.
[7] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
[8] M. Dehghan, B. Hashemi, Iterative solution of fuzzy linear systems, Appl. Math. Comput. 175 (2006) 645-674.
[9] R. Ezzati, Solving fuzzy linear systems, Soft Comput. 15 (2011) 193- 197.
[10] M.A. Fariborzi Araghi, A. Fallahzadeh, Inherited LU factorization for solving fuzzy system of linear equations, Soft Comput. 17 (2013) 159- 163.
[11] M. Friedman, M. Ma, A. Kandel, Fuzzy linear systems, Fuzzy Sets and Systems 96 (1998) 201-209.
[12] H.-K. Liu, On the solution of fully fuzzy linear systems, World Academy of Science, Engineering and Technology 43 (2010) 310-314.
[13] S.-X. Miao, Block homotopy perturbation method for solving fuzzy linear systems, World Academy of Science, Engineering and Technology 51 (2011) 1062-1065.
[14] S.-X. Miao, B. Zheng, K. Wang, Block SOR methods for fuzzy linear systems, J. Appl. Math. Comput. 26 (2008) 201-218.
[15] S.H. Nasseri, M. Matinfar, M. Sohrabi, QR-decomposition method for solving fuzzy system of linear equations, Int. J. Math. Comput. 4 (2009) 129-136.
[16] G. Simons, Y. Yao, Approximating the inverse of a symmetric positive definite matrix, Linear Algebra Appl. 281 (1998) 97-103.
[17] K. Wang, Y. Wu, Uzawa-SOR method for fuzzy linear system, International Journal of Information and Computer Science 1 (2012) 36-39.
[18] K. Wang, B. Zheng, Symmetric successive overrelaxation methods for fuzzy linear systems, Appl. Math. Comput. 175 (2006) 891-901.
[19] K. Wang, B. Zheng, Block iterative methods for fuzzy linear systems, J. Appl. Math. Comput. 25 (2007) 119-136.
[20] Y. Zhu, J. Joutsensalo, T. H¨am¨al¨ainen, Solutions to fuzzy linear systems, Information 13 (2010) 23-30.