{"title":"Preconditioned Jacobi Method for Fuzzy Linear Systems","authors":"Lina Yan, Shiheng Wang, Ke Wang","volume":74,"journal":"International Journal of Mathematical and Computational Sciences","pagesStart":301,"pagesEnd":305,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/16777","abstract":"

A preconditioned Jacobi (PJ) method is provided for solving fuzzy linear systems whose coefficient matrices are crisp Mmatrices and the right-hand side columns are arbitrary fuzzy number vectors. The iterative algorithm is given for the preconditioned Jacobi method. The convergence is analyzed with convergence theorems. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.<\/p>\r\n","references":"

 S. Abbasbandy, R. Ezzati, A. Jafarian, LU decomposition method for\r\nsolving fuzzy system of linear equations, Appl. Math. Comput. 172\r\n(2006) 633-643.\r\n S. Abbasbandy, A. Jafarian, Steepest descent method for system of fuzzy\r\nlinear equations, Appl. Math. Comput. 175 (2006) 823-833.\r\n S. Abbasbandy, A. Jafarian, R. Ezzati, Conjugate gradient method for\r\nfuzzy symmetric positive definite system of linear equations, Appl.\r\nMath. Comput. 171 (2005) 1184-1191.\r\n T. Allahviranloo, Numerical methods for fuzzy system of linear equations,\r\nAppl. Math. Comput. 155 (2004) 493-502.\r\n T. Allahviranloo, Successive over relaxation iterative method for fuzzy\r\nsystem of linear equations, Appl. Math. Comput. 162 (2005) 189-196.\r\n T. Allahviranloo, The Adomian decomposition method for fuzzy system\r\nof linear equations, Appl. Math. Comput. 163 (2005) 553-563.\r\n A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical\r\nSciences, SIAM, Philadelphia, 1994.\r\n M. Dehghan, B. Hashemi, Iterative solution of fuzzy linear systems,\r\nAppl. Math. Comput. 175 (2006) 645-674.\r\n R. Ezzati, Solving fuzzy linear systems, Soft Comput. 15 (2011) 193-\r\n197.\r\n M.A. Fariborzi Araghi, A. Fallahzadeh, Inherited LU factorization for\r\nsolving fuzzy system of linear equations, Soft Comput. 17 (2013) 159-\r\n163.\r\n M. Friedman, M. Ma, A. Kandel, Fuzzy linear systems, Fuzzy Sets and\r\nSystems 96 (1998) 201-209.\r\n H.-K. Liu, On the solution of fully fuzzy linear systems, World Academy\r\nof Science, Engineering and Technology 43 (2010) 310-314.\r\n S.-X. Miao, Block homotopy perturbation method for solving fuzzy\r\nlinear systems, World Academy of Science, Engineering and Technology\r\n51 (2011) 1062-1065.\r\n S.-X. Miao, B. Zheng, K. Wang, Block SOR methods for fuzzy linear\r\nsystems, J. Appl. Math. Comput. 26 (2008) 201-218.\r\n S.H. Nasseri, M. Matinfar, M. Sohrabi, QR-decomposition method for\r\nsolving fuzzy system of linear equations, Int. J. Math. Comput. 4 (2009)\r\n129-136.\r\n G. Simons, Y. Yao, Approximating the inverse of a symmetric positive\r\ndefinite matrix, Linear Algebra Appl. 281 (1998) 97-103.\r\n K. Wang, Y. Wu, Uzawa-SOR method for fuzzy linear system, International\r\nJournal of Information and Computer Science 1 (2012) 36-39.\r\n K. Wang, B. Zheng, Symmetric successive overrelaxation methods for\r\nfuzzy linear systems, Appl. Math. Comput. 175 (2006) 891-901.\r\n K. Wang, B. Zheng, Block iterative methods for fuzzy linear systems,\r\nJ. Appl. Math. Comput. 25 (2007) 119-136.\r\n Y. Zhu, J. Joutsensalo, T. H\u00a8am\u00a8al\u00a8ainen, Solutions to fuzzy linear systems,\r\nInformation 13 (2010) 23-30.<\/p>\r\n","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 74, 2013"}