**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**1063

# Search results for: Schrödinger equation

##### 1063 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method

**Authors:**
Emad K. Jaradat,
Ala’a Al-Faqih

**Abstract:**

Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.

**Keywords:**
Non-linear Schrodinger equation,
Elzaki decomposition method,
harmonic oscillator,
one and two- dimensional Schrodinger equation.

##### 1062 An Expansion Method for Schrödinger Equation of Quantum Billiards with Arbitrary Shapes

**Authors:**
İnci M. Erhan

**Abstract:**

**Keywords:**
Bessel functions,
Eigenfunction expansion,
Quantum billiard,
Schrödinger equation,
Spherical harmonics

##### 1061 Bound State Solutions of the Schrödinger Equation for Hulthen-Yukawa Potential in D-Dimensions

**Authors:**
I. Otete,
A. I. Ejere,
I. S. Okunzuwa

**Abstract:**

In this work, we used the Hulthen-Yukawa potential to obtain the bound state energy eigenvalues of the Schrödinger equation in D-dimensions within the frame work of the Nikiforov-Uvarov (NU) method. We demonstrated the graphical behaviour of the Hulthen and the Yukawa potential and investigated how the screening parameter and the potential depth affected the structure and the nature of the bound state eigenvalues. The results we obtained showed that increasing the screening parameter lowers the energy eigenvalues. Also, the eigenvalues acted as an inverse function of the potential depth. That is, increasing the potential depth reduces the energy eigenvalues.

**Keywords:**
Schrödinger's equation,
bound state,
Hulthen-Yukawa potential,
Nikiforov-Uvarov,
D-dimensions

##### 1060 Photon Localization inside a Waveguide Modeled by Uncertainty Principle

**Authors:**
Shilpa N. Kulkarni,
Sujata R. Patrikar

**Abstract:**

**Keywords:**
photon localization in waveguide,
photon tunneling,
quantum confinement of light,
Schrödinger wave equation,
uncertainty principle.

##### 1059 Calculation of Wave Function at the Origin (WFO) for Heavy Mesons by Numerical Solving of the Schrodinger Equation

**Authors:**
M. Momeni Feyli

**Abstract:**

**Keywords:**
Mesons,
Bound states,
Schrodinger equation,
Nonrelativistic
quark model.

##### 1058 CO-OFDM DSP Channel Estimation

**Authors:**
Pranav Ravikumar,
Arunabha Bera,
Vijay K. Mehra,
Anand Kumar

**Abstract:**

**Keywords:**
Modulation,
Non Linear Schrodinger Equation,
Optical fiber,
Split Step Fourier Method.

##### 1057 Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation

**Authors:**
Sarun Phibanchon,
Michael A. Allen

**Abstract:**

A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schr┬¿odinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton.

**Keywords:**
Soliton,
instability,
variational method,
spectral method.

##### 1056 Impact of the Existence of One-Way Functionson the Conceptual Difficulties of Quantum Measurements

**Authors:**
Arkady Bolotin

**Abstract:**

**Keywords:**
One-way functions,
P versus NP problem,
quantummeasurements.

##### 1055 Numerical Study of Some Coupled PDEs by using Differential Transformation Method

**Authors:**
Reza Abazari,
Rasool Abazari

**Abstract:**

In this paper, the two-dimension differential transformation method (DTM) is employed to obtain the closed form solutions of the three famous coupled partial differential equation with physical interest namely, the coupled Korteweg-de Vries(KdV) equations, the coupled Burgers equations and coupled nonlinear Schrödinger equation. We begin by showing that how the differential transformation method applies to a linear and non-linear part of any PDEs and apply on these coupled PDEs to illustrate the sufficiency of the method for this kind of nonlinear differential equations. The results obtained are in good agreement with the exact solution. These results show that the technique introduced here is accurate and easy to apply.

**Keywords:**
Coupled Korteweg-de Vries(KdV) equation,
Coupled Burgers equation,
Coupled Schrödinger equation,
differential transformation method.

##### 1054 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

**Authors:**
Tomoaki Hashimoto

**Abstract:**

**Keywords:**
Optimal control,
stochastic systems,
quantum systems,
stabilization.

##### 1053 Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions

**Authors:**
J. J. Peña,
J. Morales,
J. García-Ravelo,
L. Arcos-Díaz

**Abstract:**

The Point canonical transformation method is applied for solving the Schrödinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schrödinger equation with different quantum potentials.

**Keywords:**
Free particle,
point canonical transformation method,
position-dependent mass,
staggered mass distribution.

##### 1052 Constructing Distinct Kinds of Solutions for the Time-Dependent Coefficients Coupled Klein-Gordon-Schrödinger Equation

**Authors:**
Anupma Bansal

**Abstract:**

We seek exact solutions of the coupled Klein-Gordon-Schrödinger equation with variable coefficients with the aid of Lie classical approach. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of coupled Klein-Gordon-Schrödinger equations involving some special functions such as Airy wave functions, Bessel functions, Mathieu functions etc.

**Keywords:**
Klein-Gordon-Schödinger Equation,
Lie Classical Method,
Exact Solutions

##### 1051 Numerical Solution of Linear Ordinary Differential Equations in Quantum Chemistry by Clenshaw Method

**Authors:**
M. Saravi,
F. Ashrafi,
S.R. Mirrajei

**Abstract:**

**Keywords:**
Chebyshev polynomials,
Clenshaw method,
ODEs,
Spectral methods

##### 1050 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t

**Authors:**
Ahmet Tekcan,
Betül Gezer,
Osman Bizim

**Abstract:**

Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.

**Keywords:**
Pell equation,
Diophantine equation.

##### 1049 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4

**Authors:**
Armend Sh. Shabani

**Abstract:**

**Keywords:**
Pell's equation,
solutions of Pell's equation.

##### 1048 An Analytical Method for Solving General Riccati Equation

**Authors:**
Y. Pala,
M. O. Ertas

**Abstract:**

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

**Keywords:**
Riccati Equation,
ordinary differential equation,
nonlinear differential equation,
analytical solution,
proper solution.

##### 1047 The Pell Equation x2 − Py2 = Q

**Authors:**
Ahmet Tekcan,
Arzu Özkoç,
Canan Kocapınar,
Hatice Alkan

**Abstract:**

**Keywords:**
Pell equation,
solutions of Pell equation.

##### 1046 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp

**Authors:**
Ahmet Tekcan,
Arzu Özkoç,
Hatice Alkan

**Abstract:**

**Keywords:**
Diophantine equation,
Pell equation,
quadratic form.

##### 1045 Solution of The KdV Equation with Asymptotic Degeneracy

**Authors:**
Tapas Kumar Sinha,
Joseph Mathew

**Abstract:**

Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).

**Keywords:**
KdV equation,
Asymptotic Degeneracy,
Solitons,
Inverse Scattering

##### 1044 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method

**Authors:**
Said Laachir,
Aziz Laaribi

**Abstract:**

The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.

**Keywords:**
Helmholtz equation,
Nikiforov-Uvarov method,
exact solutions,
eigenfunctions.

##### 1043 Study of Cahn-Hilliard Equation to Simulate Phase Separation

**Authors:**
Nara Guimarães,
Marcelo Aquino Martorano,
Douglas Gouvêa

**Abstract:**

An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.

**Keywords:**
Cahn-Hilliard equation,
miscibility gap,
phase
separation.

##### 1042 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model

**Authors:**
Hidetoshi Konno,
Akio Suzuki

**Abstract:**

The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.

**Keywords:**
Transient population dynamics,
Phase singularity,
Birth-death process,
Non-stationary Master equation,
nonlinear Langevin equation,
generalized Logistic equation.

##### 1041 Modulational Instability of Electron Plasma Waves in Finite Temperature Quantum Plasma

**Authors:**
Swarniv Chandra,
Basudev Ghosh

**Abstract:**

Using the quantum hydrodynamic (QHD) model for quantum plasma at finite temperature the modulational instability of electron plasma waves is investigated by deriving a nonlinear Schrodinger equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of electron plasma waves in quantum plasma.

**Keywords:**
Amplitude Modulation,
Electron Plasma Waves,
Finite Temperature Model,
Modulational Instability,
Quantum
Plasma.

##### 1040 Traveling Wave Solutions for the Sawada-Kotera-Kadomtsev-Petviashivili Equation and the Bogoyavlensky-Konoplechenko Equation by (G'/G)- Expansion Method

**Authors:**
Nisha Goyal,
R.K. Gupta

**Abstract:**

This paper presents a new function expansion method for finding traveling wave solutions of a nonlinear equations and calls it the G G -expansion method, given by Wang et al recently. As an application of this new method, we study the well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and Bogoyavlensky-Konoplechenko equation. With two new expansions, general types of soliton solutions and periodic solutions for these two equations are obtained.

**Keywords:**
Sawada-Kotera-Kadomtsev-Petviashivili equation,
Bogoyavlensky-Konoplechenko equation,

##### 1039 Stability of Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

**Keywords:**
Fractional calculus,
fractional differential equation,
Lane-Emden equation,
Riemann-Liouville fractional operators,
Volterra integral equation.

##### 1038 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method

**Authors:**
Anjali Verma,
Ram Jiwari,
Jitender Kumar

**Abstract:**

This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.

**Keywords:**
Shallow water wave equation,
Exact solutions,
(G'/G) expansion method.

##### 1037 Existence of Iterative Cauchy Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

**Keywords:**
Fractional calculus,
fractional differential equation,
Cauchy equation,
Riemann-Liouville fractional operators,
Volterra
integral equation,
non-expansive mapping,
iterative differential equation.

##### 1036 Ginzburg-Landau Model for Curved Two-Phase Shallow Mixing Layers

**Authors:**
Irina Eglite,
Andrei A. Kolyshkin

**Abstract:**

**Keywords:**
Shallow water equations,
mixing layer,
weakly
nonlinear analysis,
Ginzburg-Landau equation

##### 1035 Traveling Wave Solutions for the (3+1)-Dimensional Breaking Soliton Equation by (G'/G)- Expansion Method and Modified F-Expansion Method

**Authors:**
Mohammad Taghi Darvishi,
Maliheh Najafi,
Mohammad Najafi

**Abstract:**

In this paper, using (G/G )-expansion method and modified F-expansion method, we give some explicit formulas of exact traveling wave solutions for the (3+1)-dimensional breaking soliton equation. A modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of the equation.

**Keywords:**
Exact solution,
The (3+1)-dimensional breaking soliton equation,
( G G )-expansion method,
Riccati equation,
Modified Fexpansion method.

##### 1034 Lagrangian Method for Solving Unsteady Gas Equation

**Authors:**
Amir Taghavi,
kourosh Parand,
Hosein Fani

**Abstract:**

In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.

**Keywords:**
Unsteady gas equation,
Generalized Laguerre functions,
Lagrangian method,
Nonlinear ODE.