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Abstract—In this paper, numerical solutions of the nonlinear
Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by
a method based on collocation of cubic B-splines. Applying the
Von-Neumann stability analysis, the proposed method is shown to
be unconditionally stable. The method is applied on some test
examples, and the numerical results have been compared with the
exact solutions. The L∞ and L2 in the solutions show the efficiency
of the method computationally.
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I. INTRODUCTION

IN this paper we consider the solution of the BBMB
equation

ut − uxxt −αuxx + βux + uux = 0, x ∈ [a, b], t ∈ [0, T ],
(1)

with the initial condition

u(x, 0) = f(x), x ∈ [a, b], (2)

and boundary conditions

u(a, t) = u(b, t) = 0, (3)

where α and β are constants.
BBMB equations play a dominant role in many branches of
science and engineering [1]. For α = 0, Eq. (1) is called the
Benjamin-Bona-Mahony (BBM) equation. In the past several
years, many different methods have been used to estimate the
solution of the BBMB equation and the BBM equation, for
example, see [2-6].
The paper is organized as follows. In Section 2, cubic B-spline
collocation method is explained. In Section 3, we develop an
algorithm for the numerical solution of the BBMB equation.
Section 4, is devoted to stability analysis of the method. In
Section 5, examples are presented. A summary is given at the
end of the paper in Section 6. Note that we have computed
the numerical results by Mathematica-7 programming.

II. CUBIC B-SPLINE COLLOCATION METHOD

The interval [a, b] is partitioned in to a mesh of uniform
length h = xi+1 − xi by the knots xi, i = 0, 1, . . . , N such
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that a = x0 < x1 < x2 < . . . < xN−1 < xN = b. Our
numerical treatment for BBMB equation using the collocation
method with cubic B-spline is to find an approximate solution
UN (x, t) to the exact solution u(x, t) in the form

UN (x, t) =
N−1∑
i=−3

ci(t)Bi(x), (4)

where ci(t) are time-dependent quantities to be determined
from the boundary conditions and collocation form of the
differential equations. Also Bi(x) are the cubic B-spline basis
functions at knots, given by [7,8]
Bi(x) =

1
6h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xi)3, x ∈ [xi, xi+1),
h3 + 3h2(x − xi+1)2 + 3h(x − xi+1)
−3(x − xi+1), x ∈ [xi+1, xi+2),
h3 + 3h2(xi+3 − x)2 + 3h(xi+3 − x)
−3(xi+3 − x), x ∈ [xi+2, xi+3),
(xi+4 − x)3, x ∈ [xi+3, xi+4).
0, otherwise.

(5)
The values of Bi(x) and its derivatives may be tabulated as
in Table 1. The values of U and its space derivatives at the
knots xi can be obtained as

Ui =
1
6
(ci−3 + 4ci−2 + ci−1), (6)

U ′
i =

1
2h

(ci−1 − ci−3), (7)

U ′′
i =

1
h2

(ci−3 − 2ci−2 + ci−1). (8)

TABLE I
B

i
,B

′
i

AND B
′′
i

AT THE NODE POINTS.
x x

i
x

i+1 x
i+2 x

i+3 x
i+4

B
i
(x) 0 1

6
4
6

1
6

0
B′

i

(x) 0 1
2h

0 − 1
2h

0
B′′

i

(x) 0 1
h
2 − 2

h
2

1
h
2 0

III. CONSTRUCTION OF THE METHOD

To apply the proposed method, discretizing the time
derivative in the usual finite difference way. Using the finite
difference method, we can write

un+1−un

Δt − un+1
xx

−un

xx

Δt − α
un+1

xx
+un

xx

2 +
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β
un+1

x
+un

x

2 + (uux)n+1+(uux)n

2 = 0.

(9)

The nonlinear term in Eq. (9) can be approximated by using
the following formula [9]:

(uux)n+1 = un+1un
x + unun+1

x − (uux)n. (10)

Substituting the approximate solution U for u and putting
the values of the nodal values U and its derivatives using Eqs.
(6)- (8) at the knots in Eq. (9) yield the following difference
equation with the variables ci , i = −3, . . . , N − 1,

ácn+1
i−3 +b́cn+1

i−2 +ćcn+1
i−1 = d́cn

i−3+écn
i−2+f́ cn

i−1, i = 0, 1, . . . , N,
(11)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

á = x
6 − y

2h + z
h2 ,

b́ = 4x
6 − 2z

h2 ,

ć = x
6 + y

2h + z
h2 ,

d́ = 1 + w
h2 − v

2h ,

é = 4 − 2w
h2 ,

f́ = 1 + w
h2 + v

2h ,

(12)

with x = 1 + Δtun

x

2 , y = βΔt
2 + Δtun

2 , z = −1 − αΔt
2 ,

w = −1 + αΔt
2 , v = −βΔt

2 .

The system (11) consists of N + 1 linear equations in N +
3 unknowns {c−3, c−2, . . . , cN−2, cN−1}. To obtain a unique
solution for C = {c−3, . . . , cN−1}, we must use the boundary
conditions. From the boundary conditions and Table 1, we can
write

1
6
(cn+1

−3 + 4cn+1
−2 + cn+1

−1 ) = 0, (13)

1
6
(cn+1

N−3 + 4cn+1
N−2 + cn+1

N−1) = 0. (14)

Associating (13) and (14) with (11) we obtain a (N + 3) ×
(N + 3) system of equations in the following form

AC = Q, (15)

where

A =

⎛
⎜⎜⎜⎜⎜⎝

1
6

4
6

1
6 . . . 0

á b́ ć . . . 0
...

. . . . . .
...

0 . . . á b́ ć
0 . . . 1

6
4
6

1
6

⎞
⎟⎟⎟⎟⎟⎠

, (16)

C = (cn+1
−3 , cn+1

−2 , . . . , cn+1
N−2, c

n+1
N−1)

T , (17)

Q=
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
0, u(x0, t) + (−1 + αΔt

2 )uxx(x0, t) − β Δt
2 ux(x0, t), . . . ,

u(xN , t) + (−1 + αΔt
2 )uxx(xN , t) − β Δt

2 ux(xN , t), 0
)T

,

if t = Δt,(
0,Ψn

0 , . . . ,Ψn
N , 0

)T

, if t > Δt,

(18)
with

Ψn
i = d́cn

i−3 + écn
i−2 + f́ cn

i−1.

IV. STABILITY ANALYSIS

In this section, we present the stability of the cubic B-spline
approximation (11) using the Von-Numann method [10,11].
According to the Von-Neumann method, we have

cn
i = ξnexp(λkhi), λ2 = −1, (19)

where k is the mode number and h is the element size. To
apply this method, we have linearized the nonlinear term uux

by consider u as a constant in term (9). We obtain the equation:

āξn+1exp(λkh(i − 3)) + b̄ξn+1exp(λkh(i − 2))+

c̄ξn+1exp(λkh(i − 1)) = d̄ξnexp(λkh(i − 3))+

ēξnexp(λkh(i − 2)) + f̄ ξnexp(λkh(i − 1)),

(20)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ā = 1
6 − ý

2h + x́
h2 ,

b̄ = 4
6 − 2x́

h2 ,

c̄ = 1
6 + ý

2h + x́
h2 ,

d̄ = 1
6 + ý

2h + ź
h2 , ,

ē = 4
6 − 2ź

h2 , ,

f̄ = 1
6 − ý

2h + ź
h2 , ,

(21)

with x́ = −1 − αΔt
2 , ý = βΔt

2 + Δtun

2 , ź = −1 + αΔt
2 .

Dividing both sides of (20) by exp((i−2)λkh), we can write:

ξn+1
(
āexp(λkh) + b̄ + c̄exp(−λkh)

)
=

ξn
(
d̄exp(λkh) + ē + f̄ exp(−λkh)

)
,

(22)

Eq. (22) can be rewritten in a simple form as:

ξ =
X − λY

X1 + λY
, (23)
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where

X = ( 1
6 + ź

h2 ) cos(kh) + ( 1
3 − ź

h2 ),

X1 = ( 1
6 + x́

h2 ) cos(kh) + ( 1
3 − x́

h2 ),

Y = ( ý
2h ) sin(kh).

X and X1 can be rewritten in the form:

X1 = ( 1
6 − 1

h2 ) cos(kh) + ( 1
3 + 1

h2 ) + αΔt
2h2 (1 − cos(kh)),

X = ( 1
6 − 1

h2 ) cos(kh) + ( 1
3 + 1

h2 ) − αΔt
2h2 (1 − cos(kh)).

We note that X ≤ X1, so |ξ|2 = ξξ̄ = X2+Y 2

X2
1+Y 2 ≤ 1.

Therefore, the linearized numerical scheme for the BBMB
equation is unconditionally stable.

V. NUMERICAL EXAMPLES

We now obtain the numerical solutions of the BBMB
equation for two problems. To show the efficiency of the
present method for our problem in comparison with the exact
solution, we report L∞ and L2 using formulae

L∞ = maxi | U(xi, t) − u(xi, t) |,

L2 = (h
∑

i | U(xi, t) − u(xi, t) |2) 1
2 ,

where U is numerical solution and u denotes analytical
solution.

Example 1. Consider the BBMB equation with α = 0 and
β = 1 in the interval [−40, 60], with the exact solutio u(x, t) =
3csech2(k(x−vt−x0)). We have taken c = 0.03, v = 1, x0 =
0 and k = c

4v(c+1) . The initial condition is taken from the exact
solution. Table 2 gives a comparison between the L∞and L2

found by our method in different times and different values of
N with Δt = 0.1. Also Table 3 gives comparison of absolute
errors found by present method with Δt = 0.01 and N = 300.

TABLE II
NUMERICAL RESULTS FOR EXAMPLE 1.

Method T ime N L2 × 103 L∞ × 103

present method 1 100 0.902611 0.328588
present method 10 100 8.14052 1.76978
present method 20 100 16.2506 3.53644
present method 1 300 0.507465 0.328588
present method 10 300 4.71001 1.77131
present method 20 300 9.40151 3.54203
method in [12] 20 1000 14.45 3.996

TABLE III
COMPARISON OF ABSOLUTE ERRORS FOR EXAMPLE 1 WITH

Δt = 0.01 AND N = 300.
x\t 0.5 1 1.5

-30 2.12681 × 10−4 1.99925 × 10−4 5.42065 × 10−5

-20 1.0672 × 10−3 1.00969 × 10−3 2.72896 × 10−3

-10 3.57975 × 10−3 3.52499 × 10−3 1.00584 × 10−3

0 7.45797 × 10−4 1.20873 × 10−3 5.59997 × 10−4

10 3.9186 × 10−3 4.06787 × 10−3 1.25094 × 10−3

20 1.36982 × 10−3 1.50618 × 10−3 5.09114 × 10−4

30 2.81202 × 10−4 3.12619 × 10−4 1.07576 × 10−5

Fig. 1. Three-dimensional plot for Example 1.
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Fig. 2. Approximate solution graphs of Example 1 for x ∈ [−40, 60] with
Δt = 0.01 and N = 300.

Example 2. As a last study we consider here a numerical
solution of the BBMB in the interval [−12, 12] with α = 1 ,
β = 1 and initial condition u(x, 0) =sech2(x

4 ). Tables 4 and
5 give numerical results with Δt = 0.01 and N = 200. Also
Fig 3 shows approximate solution graphs.

TABLE IV
NUMERICAL RESULTS FOR EXAMPLE 2 WITH Δt = 0.01 AND

N = 200.
x\t 0.2 0.5 0.7
-12 3.33333×10−11 -2.23333×10−10 -3.33333×10−11

-10 0.0229513 0.0198217 0.0179501
-5 0.256278 0.224742 0.206391
0 0.978102 0.933352 0.897596
5 0.319376 0.380993 0.42342
10 0.0304198 0.0397963 0.0472631
12 2×10−10 6.66666×10−11 -2.66667×10−10
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Fig. 3. Approximate solution graphs of Example 2 for x ∈ [−12, 12] with
Δt = 0.01 and N = 200.

TABLE V
NUMERICAL RESULTS FOR EXAMPLE 2 WITH Δt = 0.01 AND

N = 200.
x\t 1 1.5 2
-12 1.33333×10−11 -1.26667×10−10 8.66667×10−11

-10 0.0154352 0.0119344 0.00916508
-5 0.182231 0.149239 0.123215
0 0.83834 0.733537 0.631526
5 0.487532 0.589817 0.676809

10 0.0605017 0.088659 0.12528
12 -1.13333×10−9 -3.33333×10−10 -1.01048×10−16

VI. CONCLUSION

The cubic B-spline collocation method is used to solve
the Benjamin-Bona-Mahony-Burgers(BBMB) equation. The
stability analysis of the method is shown to be unconditionally
stable. The numerical results given in the previous section
demonstrate the good accuracy and stability of the proposed
scheme in this research.
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