
 
 

 

  
Abstract—An inverse geometry problem is solved to predict an 

unknown irregular boundary profile. The aim is to minimize the 
objective function, which is the difference between real and 
computed temperatures, using three different versions of Conjugate 
Gradient Method. The gradient of the objective function, considered 
necessary in this method, obtained as a result of solving the adjoint 
equation. The abilities of three versions of Conjugate Gradient 
Method in predicting the boundary profile are compared using a 
numerical algorithm based on the method. The predicted shapes show 
that due to its convergence rate and accuracy of predicted values, the 
Powell-Beale version of the method is more effective than the 
Fletcher-Reeves and Polak –Ribiere versions.     

  
Keywords—Boundary elements, Conjugate Gradient Method, 

Inverse Geometry Problem, Sensitivity equation.  

I. INTRODUCTION 
HE inverse heat transfer method (IHTM) has received 
great    attention recently and found many applications in 

the engineering discipline. In such applications, data such as 
geometry, boundary and initial conditions and also thermal 
properties, normally provided in direct approaches to solving 
the problem, are not known and should be predicted. The IHT 
method are used in predicting heat flux [1],[2], thermal 
conductivity [3],[4], internal heat generation [5], and geometry 
[6],[7].  

The problem attended to in this study is one of predicting 
the unknown boundary profile using the temperature 
distribution on other boundaries of an object. These types of 
problems are ill-posed, mathematically non-linear, and highly 
sensitive to input errors and inevitable measurement noises. In 
light of this fact, use is made of two approaches in solving 
inverse problems: the first uses discretization to solve the direct 
problem and the other is a regularization scheme for the inverse 
problem. The latter approach usually includes an iterative 
procedure to minimize the objective function. To obtain the 
unknown boundary and also solve the ensuing equations, the 
boundary elements method (BEM) is suggested. In 
comparison to other segmentation methods such as finite 
difference and finite elements, BEM is favored since it 
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decreases computation time and memory, while allowing a 
solution to problems of complicated geometries [8]. 

Among various types of regularization methods, two which 
are of more significance are Tikhonov [9] and Beck [10] 
regularization methods. The other method, which in using a 
convergence criterion falls in the iterative regularization 
methods category, is the Conjugate Gradient Method (CGM). 
The Conjugate Gradient Method (CGM) is a powerful 
minimization procedure which can be implemented to predict 
the function or parameter in both linear and non-linear inverse 
heat transfer problems. There are three common versions of 
this method whose approaches to calculating the conjugate 
directions are different [11]. The objective function gradient 
can be obtained using direct gradient evaluation and adjoint 
equation methods [12].  

In fact, the current work is the extension of  [13] in which, 
the Levenberg-Marquardt method and the Fletcher- Reeves 
version of CGM have been compared in predicting the 
unknown boundary in steady-state conditions and the 
boundary conditions were assumed to be in the form of 
constant temperature and constant heat flux.  

II.  MATHEMATICAL FORMULATION 

A. Formulating the Direct Heat Conduction Problem 
The direct problem is a two-dimensional steady-state 

conduction equation in region Ω with the known boundary 
conditions. As shown in Fig. 1, the boundaries at x=0, and 
x=10 are insulated. At y=0, a constant heat flux, q0 flows out 
of the boundary, while the irregular boundary, illustrated as 
f(x) , is in the constant temperature T0 . 

Two-dimensional, steady-state conduction equation is 
 

0   in     Ω            (1-a) 
 
BC's 
 
∂T/∂x=0                      at    x=0           (1-b) 

 
∂T/∂x=0                      at    x=L           (1-c) 

 
-∂T/∂y=q0                  at    y=0            (1-d) 

 
T=T0                          at   y=f(x)           (1-e) 

 
The differential equation is discretized using BEM. The 

boundary integral relation for two-dimensional conduction 
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problem with constant properties and steady-state conditions 
in region Ω bounded by Γ is: 

 
Γ Γ          (2) 

 

where M is a point, either in region Ω or on the boundary Γ. T 

and q represent the temperature and heat flux density, 

respectively. Constant C can take different values based on the 

position of point M. T*, is the general solution in BEM, and 

q* represents the normal gradient of T*. The general solution 

for the two- dimensional, steady-state condition is: 

    ln                                                    (3) 

where r is the distance between point M and any point on 
boundary Γ. 

  

 
Fig. 1 The studied geometry and region 

 
Dividing boundary Ω into k elements, allows for setting up 

(2) for any boundary element. Subsequently, a set of linear 
algebraic equations for all elements can be set up so that: 
 

                  (4) 
 

In this equation, T is the temperature vector of boundary 
elements, q represents the heat flux density vector, G and H 
are geometry-dependent matrices, and C is a diagonal matrix. 
With the boundary conditions dually noted, (4) simplifies to: 

 
AX=B                    (5) 

 
where X is the vector comprised of the unknown parameters. 
Matrix B is the result of multiplying the prescribed values 
matrix, by the geometry-dependent matrices. The set of linear 

equations with obtained boundary segmentation can be used to 
evaluate the unknown temperature and heat flux. 

B. Formulating the Inverse Heat Conduction Problem 
In the inverse approach, boundary f(x) pertinent to region Ω 

is unknown. The measured temperatures are represented in the 
form Y(xi,0) = Yi , where i=1, …, m. The approach used in the 
inverse method is such that an initial guess is made as to the 
profile of the unknown boundary, and the ensuing direct 
conduction problem is solved. An objective function of the 
form below is defined: 
 

  ∑             (6) 
  

where Ti is the temperature obtained from the solution of the 
two-dimensional, steady-state conduction problem using the 
estimated boundary, f ̂(x). The «^» sign is used to depict 
estimated values. 

C. Conjugate Gradient Method 
By obtaining the conjugate direction at each point and the 

optimum step size in this direction, through an iterative 
procedure adhering to (7), CGM evaluates the minimum value 
for the desired objective function (6). 
 

     ,      0,1,2,…    (7) 
 

Based on the procedures undertaken in finding the 
conjugate direction, CGM takes on three different versions. 
The general form of the conjugate direction is: 
 

    (8) 
 

With this notation, the angle between the decreasing and 
negative directions of the conjugate direction will be less than 
90°. This guarantees the finding of a minimum value. Index q 
in (8) represents the iteration in which a restart has taken place 
to optimize CGM. Conjugate coefficients and  contribute 
to each version of CGM in the following manner. The first 
version of CGM is known as the Fletcher-Reeves version [11]. 
Coefficients and  in this version are defined as: 

 

;   0   ,    0      (9) 

 
In the second version, known as Polak-Ribiere, the 

coefficients are in the following form: 
 

;     0   ,     0  (10) 

 
In problems of non-linear parameter prediction, the Polak-

Ribiere version performs better than the Fletcher-Reeves 
version [14]. 

Beale and Powell, based on the second version of CGM, 
presented a new version of CGM with the following relations 
for the conjugate coefficients. 
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;   0      (11) 

 

;   0       (12) 

 
Powell notes that the use of (11) and (12) necessitates using 

the restart technique. This technique is used when the 
gradients in the relevant iteration are non-orthogonal which, is 
a reason for the local non-linearity. Furthermore, when the 
direction obtained does not bring about the necessary decrease 
in the function, the conjugate direction is corrected using the 
restart technique. This comes about by using 0 in (8). 
The extent to which a gradient is non-orthogonal in iteration 
"n" is calculated using the condition below: 

 
0.2       (13) 

 
The degree to which a function is minimized (largeness of 

angle between the direction of decrease and negative of the 
gradient) in iteration "n" can be studied using any of the 
following relations:  

 
1.2         

 (14) 
 

0.8         
 (15) 

 
In the Powell-Beale version of CGM, the direction of the 

function reduction defined in (8) is obtained using the 
following algorithm: 

 
1. Analysis of the inequality mentioned in (13). In the 

event of both sides being equal, assuming q=n-1 
2. Evaluation of   from (11) 
3. Where n=q+1, assuming =0, and for all other 

cases, calculating  from (12) 
4. Evaluating the direction of decrease, using (8) 
5. When n≠q+1, checking (14) and (15). In the case of 

either one holding, setting , and re-evaluating the 
direction of reduction from (8) 

 
Setting = =0 in each iteration, the direction of 

reduction for  turns out to be the gradient direction. This 
fact characterizes the quick decrease method. Since the extent 
of non-linearity of the problem is studied using (13), the 
Powell- Beale version of CGM proves to be productive in 
dealing with problems of a non-linear nature. In cases where 
(13) holds for inverse problems having a high degree of non-
linearity, by restarting the calculations, the algorithm can 
speed up attainment of the minimum more than the other two 
methods. 

D.  Sensitivity Equation 
The sensitivity equation can be evaluated from (1) by 

assuming boundary f(x) to move in direction "y" by an amount 
of ∆f. Temperature T(x,y) changes to T+∆T. Replacing f  by 
f+∆f and T by T+∆T in (1) produces a new equation. By 
deducting (1) from the new one, and neglecting the second 
degree terms which arise, the sensitivity equation for the 
sensitivity function ∆T(x,y) takes the form: 

 
∆ ∆ 0          in    Ω               (16) 

 
∆ 0                       at   x=0          (16-a) 

 
∆ 0                       at   x=L               (16-b) 

 
∆ 0                       at   y=0              (16-c) 

 
∆ ∆                   at    y=f(x)        (16-d) 

 
To find the optimum step size, the boundary is corrected to 

have the form f β P . The value of   is corrected using 
the steps outlined below. In iteration n+1, the objective 
function defined using (6) becomes 

 
∑       (17) 

 
Expanding temperature  using the Taylor 

series bounding , and neglecting the second and higher 
degree terms, gives 

 
∑ ∆     (18) 

 
 results from the direct problem solution for the 

boundary 
 
   . By minimizing the objective function 

relevant to  in the direction of , the optimum step size 
can be evaluated 

 
∑ ∆
∑ ∆

             (19) 

 

E.  Adjoint Equation 
Obtaining the gradient of the objective function using a 

method other than normal differentiation is possible through 
the definition of the Lagrange Coefficient, denoted by λ(x,y). 
It is also known as the adjoint function. In this way, the 
change of the objective function, ∆ , will be obtained from: 

 

∆ 2 ∆  

∆ ∆                                   (20) 

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:7, No:1, 2013 

105International Scholarly and Scientific Research & Innovation 7(1) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
1,

 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
12

53
.p

df



 
 

 

To cancel out terms including ∆T, λ is assumed to be the 
solution to the differential equation: 

 

0          in    Ω            (21) 

 

 0                    at   x=0              (21-a) 
 

0                     at   x=L         (21-b) 
 

2∑    at   y=0   (21-c) 
 

0                      at    y=f(x)        (21-d) 
 
By performing some algebraic manipulations one can reach 

the objective function gradient: 
 

            (22) 

 

F. Convergence Criterion 
Considering the significant fluctuations in the inverse 

approach which result from noises in input data, CGM does 
include a criterion which considers difference between 
temperatures as a measure to abort the algorithm, thus making 
the problem well-posed. This criterion is: 
 

| |                  (23) 
 

where   is the standard deviation of measurement and is 
assumed to take on a value of . By using this value in 
(6), the following relation is obtained for ε: 

 
∑               (24) 

III. COMPUTER ALGORITHM 
An algorithm can be presented to aid in shape prediction 

using CGM along with the adjoint equation. The steps are 
outlined below: 
 

1. Solve the direct heat conduction problem and 
evaluate values of T(x,y) 

2. Analyze the convergence criterion  
3. Solve the adjoint equation and evaluate values of 

γ(x,y) 
4. Obtain objective function gradient and values of 

 
5. Evaluate conjugate coefficient and the direction of 

decrease  
6. Solve the sensitivity equation for Δ and 

evaluate values of ΔT(x,y) 
7. Evaluate the optimal step size,  
8. Evaluate the new boundary and repeat the 

calculations from step 1 

IV. RESULTS AND DISCUSSION 
In this section, function f(x) is predicted for a problem with 

sinusoidal boundary, with the aid of the temperature of some 
points on the boundary at y=0 being known. 

In order to compare the results with those in a situation 
where measurement is reported with error, an error having 
normal distribution and zero mean-value with constant 
standard deviation is assumed for the data. The temperature 
with reporting error is assumed to have the form: 

 
                (25) 

 
where Yexact results from the solution to the direct conduction 
problem for the precise boundary . σ is the value of 
standard deviation, while  is the random variable produced 
by the DRNNOR sub-routine, present in the function library 
of FORTRAN. 

A. Comparison of Three Versions of Conjugate Gradient 
Method in Predicting an Unknown Boundary 

To investigate the ability of different versions of CGM, they 
are used to predict unknown sinusoidal boundary for the 
accurate measurement and zero-error 0.0  situation. It 
should be noted that the mean relative error can be evaluated 
using the accurate and computed values of the unknown 
boundary, with the equation below: 

 
∑ 100%    (26) 

 
In (26), M is the number of parameters predicted by the 

algorithm or, alternatively, the number of unknown points. 

B. Sinusoidal Boundary 
The function which is to be predicted for a sinusoidal 

boundary is 
 

1.5 0.8 sin  ,   0       (27) 
 
In all the cases dealt with, the geometric specifications 

and boundary conditions are: 10, 100 and 
20. 

The number of boundary elements on either side of the 
region Ω is 3, while on the top and bottom boundaries, 20 
elements are foreseen. The inverse analysis is based on the 
temperatures obtained using 21 heat sensors (m=21), placed 
∆ 0.5 apart. 

Based on Figs. 2 and 3, the differences between the 
predicted boundary geometry using various versions of 
CGM are negligible. However, comparison of results set out 
in Tables I and II shows that even though the Polak-Ribiere 
version of CGM for higher iterations predicts the boundary 
more accurately than the other two versions, its performance 
in lower iterations doesn't fare well when compared to the 
Powell-Beale version which converges more quickly. The 
analyses which follow are all based on the Powell-Beale 
version of CGM. 
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TABLE I 
COMPARISON OF THREE VERSIONS OF CGM IN PREDICTING THE BOUNDARY 

FOR PRESCRIBED CONVERGENCE RATE 

Version 
Initial 
Guess  

No. of 
Iterations 

Objective 
Function 

Mean 
Error(%) 

Fletcher-
Reeves 

1.5 0.03 21 0.0267 2.5381 

Polak-
Ribiere 

1.5 0.03 29 0.0241 2.3844 

Powell-
Beale 

1.5 0.03 20 0.0235 2.5569 

 
TABLE II 

COMPARISON OF THREE VERSIONS OF CGM IN PREDICTING THE BOUNDARY 
FOR PRESCRIBED NUMBER OF ITERATIONS 

Version 
Initial 
Guess  

No. of 
Iterations 

Objective 
Function 

Mean 
Error(%) 

Fletcher-
Reeves 1.5 - 50 0.0138 2.0936 

Polak-
Ribiere 

1.5 - 50 0.0035 1.7583 

Powell-
Beale 

1.5 - 50 0.0091 2.2042 

 

 
     Fig. 2 Sinusoidal boundary predicted using three versions of CGM 

for σ=0.0 and ε=0.03 
 

 

 
Fig. 3 Sinusoidal boundary predicted using three versions of CGM 

for σ=0.0 and 50 iterations 

C. Study of the Effect of Reduction in Number of Sensors on 
Inverse Algorithm 

Numerical analyses have been done to study the effect of 
reducing the number of sensors on the accuracy of prediction 
of the unknown boundary for the case of σ=0.0. 

As shown in Table III, the predicted values for the inverse 
solution when m=11 have more error than the case of m=21. 
However, a closer look at Fig. 4 shows that there are no 
significant differences between the predicted boundaries in 
two cases. 
  

 
Fig. 4 Boundary predicted using third version of CGM for σ=0.0 with 

m=21 and m=11 
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TABLE III 
EFFECT OF NUMBER OF SENSORS ON CONVERGENCE PARAMETERS OF THIRD 

VERSION OF CGM FOR =0.0 

No. of 
Sensors ε 

No. of 
Iteration 

Objective 
Function 

Mean 
Error (%) 

21 0.04 21 0.0379 2.8925 

11 0.24 16 0.2365 4.4710 

D.  Study of the Effect of Measurement Errors on the Inverse 
Algorithm 

One of the ways which can be used in studying the effect of 
measurement errors on the results obtained from the inverse 
algorithm is to add error to the temperatures evaluated using 
the direct algorithm. Here the standard deviation of 
temperature obtained for predicting the boundary for all the 
sensors used assumed to be 1.0 and then the effect of 
simultaneously reducing the number of sensors while 
increasing measurement error has been studied. 

Fig. 5 shows that the reduction in the number of sensors, 
coupled with an increase in error has not resulted in the error 
in the predicted data to intensify. That through the addition of 
error to the acquired data, it is not expected that the inverse 
algorithm reduces the value of objective function to much 
lower values, as well, data in Table IV show that the 
convergence rate increases. 

 
TABLE IV 

EFFECT OF SIMULTANEOUS INCREASE IN ERROR AND DECREASE IN NUMBER 
OF SENSORS ON THE CONVERGENCE PARAMETERS OF THIRD VERSION OF 

CGM 
No. of 

Sensors  
No. of 

Iteration 
Objective 
Function 

Mean 
Error (%) 

21 21 7 20.3769 4.6222 

11 11 6 10.7691 7.8993 

 

 
Fig. 5 Sinusoidal boundary predicted using third version of CGM for 

σ=1.0 with m=21 and m=11 
 

The difference between the error present in this table and 
that of Table III provides that the error for evaluated values is 

of the same degree of those for input values, and the inverse 
algorithm, even in the presence of errors for input data, is able 
to predict the unknown boundary well. 

V.   CONCLUSION 
Three different versions of Conjugate Gradient Method 

used in determining the unknown boundary geometry, 
which is one of the function determination inverse 
problems. The presented results clearly indicate that CGM 
utilizing the boundary elements method can predict the 
optimum profile conveniently, and the Powell-Beale version 
of CGM shows higher convergence rate and accuracy of the 
other ones. Also, the results obtained through this method are 
not sensitive to the measurement errors and the number of 
used temperature sensors. 
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