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Fourier spectral method for analytic continuation

Zhenyu Zhao and Lei You

Abstract—The numerical analytic continuation of a functionwhere
f(z) = f(z + iy) on a strip is discussed in this paper. The data 1
are only given approximately on the real axis. The periogicif . » P
given data is assumed. A truncated Fourier spectral methsdaen [ollr = N [o(@)[Pdz |, l<p<oo.
introduced to deal with the ill-posedness of the problene ffeoretic

results show that the discrepancy principle can work welltfos |n particular,L?(A) is a Hilbert space with the inner product
problem. Some numerical results are also given to show flwegicy
(u,v)r2(p) = / u(z)v(x) dz.
A

of the method.
Keywords—analytic continuation,ill-posed problem, regularipati
For simplicity, denote the norjw|| = by ||v].

method Fourier spectral method, the discrepancy principle

The set of functiong’*, 1 = 0,+1,..., is an orthogonal
. INTRODUCTION system inL?(A). The Fourier transformation of a function
9 .
The problems of analytic continuation are frequently ed. € L (A) is

o0

countered in many practical applications [10], [11], [1[3K]. v — Z el )
In general, this problem is ill-posed and several techrégue
have been developed for it. In this paper we consider the _ ) o
problem of analytic continuation of periodic analytic fiioa Where is the Fourier coefficient,
fly) = f(z +1iy) on a strip domain in the complex plane 1

oy =— [ v(@)e W@dx, 1=0,%1,... (3)
27'(' A

l=—00

O={z=z+iy e Clz € R,|y| < yo,yo IS a positive constait
(1) The Parseval equality holds, namely

where i is the imaginary unit. The data are only given o

on the. real axis, i.e.f(z)|y=0 = f(x) =: fo is know_n IJo]|2 = 2”2 o2 (4)

approximately and we would extentlanalytically from this -~

data to the whole domaif. This problem has been considered o

by a mollification regularization method in [9]. In [7], [8], .'NoW letN be any positive integer andy be the set of all

Fourier method and Tikhonov regularization method has beljgonometric polynomials of degree at mast i.e.,

developed for solving this_ problem. . Vi = span{¢ | || < N} (5)
In this paper, the Fourier spectral method will be used to

deal with the problem in the case fif is periodic on the real The L?— orthogonal projectionPy : L?(Q2) — Vx is such a

axis. The idea of this paper is analogy to the one in [7]. But imapping that for any € L?(Q),

[7], the periodicity of the functions did not be utilized. 8oly

a prior parameter can be used for it and the numerical results (v—Pnv,¢) =0, Ve Vy. (6)
in [7] show that the method is sensitive for the choice of the y..q

parameter. In this paper, We will point out that the discreya ’ Py — o ilw o
principle can be used as the stop rule benefit from the acgurac NU Z vie

of Fourier spectral method to periodic functions. <N

This paper is organized as follows. Some preliminary ma- We assume that
terials which will be introduced in section 2. In section I8¢ t ) )
developed method and corresponding convergence reslilts wi f(+1iy) e L3 (A) for [y| < yo. (8)
be established. Some numerical results are given in seétiogeCause the functiofi(z)

- is analytic in2, the following series
to show the efficiency of the new method.

converges in:

Il. PRELIMINARIES f(z) = f(fCJri;/(l)( )
In this section, we present some preliminary materials whic - Z&ZO (inL;L Sy)” lyl < yo- 9)
will be used throughout the paper. L&t= (0, 27) and =m0 ar D" (@)
LP(A) = {v | v is measurable anfiv||.» < oo}, where D™ = 86;”_ If the dataf(- +iy) € L(A) for all y,

0 <y <yoand we let
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then we can get

£ _ i = (ly)n n —ilz
fro= o /A 2= D" f(x)e " dg
— i - (ly)n n —ilx
= %;/A S D" f(x)e da
— %;/A p G f(z)e " dx
1 - (_yl)n —ilz )
= f d
27rn_0( n! /A () .
_ efylfl()
that is to say
fe) =fla+iy) = Y eVl =Afy (12
l=—0o0

Lemma 1: Let f(- +iy) € L*(A),V|y| < yo, then for any
lyl < o,

In the following, we propose a scheme to attain the function
©° from the perturbed dat#’. We can give the approximate
function as follows:

Z f6 ilx

[1]<m

Puf’ = (17)

0D, (x) =

where f{ are the Fourier coefficients gf andm = m(5, fJ)
is determined by the discrepancy principle

[(I=Pu)f’ | <76 < || (I = Puo1)f°|  (18)

with 7 > 1.

In the following, we will prove a convergence estimate.
Theorem 2: Suppose thap?, is defined by (17) and (18)
with 7 > 1 and the conditions (14) and (15),(16)are hold, then

for any |y| < yo, we have

lyl yo—lyl |yl ugr\y\
| £(+iy)—Aypd, | < Evo |[(r+1) %0 +2y0e‘y‘<f—1>yo v
(19)

Proof:
Supposd) < y < yo, the proof for the case-yg <y <0

1 +iy) = Ay (Px fo) | < e P20 (£ (- + o) | + 11/ = iwo) ) - (13 will be analogous. From (18), we can get
Proof: I =)l = (L= Po)f7 4 (= Pu)(f = )]
. <1 = Po) £+ 1 = o) (f = )
I£C 4 i) = A P Sl . < (r+1)3. '
=27 e Y12+ eV )
2> f It L f !l And the following inequality is hold by Holder inequality
<o (S n A2 + Syl ) ) — AP f I i jop
< 27T€2N(‘y‘_y0) Z |€l(y0_‘y‘)€‘yl|f |2 || f( + 1y) H’Lf || Z|l\>m |6 fl |
= I>N ! 72 e 2y l|f()|y0|f0| yo 2
+ Y el@oluelutl f)2 jt>m w-r  (20)
N(yl— 2 172 (Zu|> _2y°l|fo|2) o (Z|”>m|fl0|2) "
§2 vl=vo) (Zz N|€yU fl| +Zz< N|ey0 fl| ) (yo 9
< 2N vl=w0) (|| £ (- + igo) || + [L£(- = o)) - < B (1= P/
m Hence
. (yo y) (wo—v)
1F(+iy) = APuf || < Ew(r+1)" % 6w . (21)
I1l. THE METHOD AND CONVERGENCE RESULTS
On the other hand,
We assume the exact dafa and the measured datg )
belong toL?(A) and satisfies [Prrf = fI = N(Pm—1f® = %) = (I = Pm1)(f = £l @2)
5 2 ”F)'mflftS f Ilfll(pr'mfl)(fffd)H
— <
1fo = f7ll <o, 14 Erom (18), we have
whered > 0 denotes the noisy level. s s
. : o P,1f°— 0, 23
In addition, note that for any ill posed problem some a priori I = fl=T (23)
assumption on the exact solution is needed and necessand it is obvious that
otherwise, the convergence of the regularization appratem s
solution will not be obtained or the convergence rate can be (I = Pr—1)(f = fO) < 6.
arbltra_lry sIow[S]._ In this paper, we will assume there hdid t So we can obtain
following a priori bounds
. Pon1f = f|| = (r—=1). (24)
17 +ivo)ll < B, (15) VPnaf = Jli= 7 =1
From Lemma 1
and
I£(- = iyo)|l < E, (16) (T =18 <[P f = | < 2687w B (25)
We want to find a function® such that So we can obtain
) ) s In2F —In(r — 1)¢
i [ £(- +1iy) = Aye® [ =0, V]y[ < yo. m < +1
5§—0 Yo
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TABLE |
RESULTS OFEXAMPLE 1 WITH y = 0.5 42 - e
Il £C+iv)—Ayed, | Il £ C+iy) = Ayed, lloo

& m Tl (G )
1071 3 0.0101 0.0102
1072 4 0.0018 0.0022
1073 5 0.0003 0.0004
104 6 6.12e-5 0.0001

TABLE Il

RESULTS OFEXAMPLE 1WITHy =1

Il £ (+iy)—Ayfs || Il fC+iy)—Ayfs |loo
01 m TFCTml FIGEmIP
10~1 3 0.0573 0.0390
10—2 4 0.0161 0.0135 )
10-3 5 0.0042 0.0037
10~4 6 0.0008 0.0008
Therefore ”

£+ iy) — Ay, |l S
= [ f(-+iy) — AyPuf | + [| Ay P f — Ay,
Y Yo—Y _¥o—v
<Ew(r+1) v § v 4| Ame(f — f‘s) I
< E%(T+ 1) TR + e™Y§
Yo yo—vy
0

<Ew [(r+1)%% +2W0e¥(r —1)% |6 v

IV. NUMERICAL IMPLEMENTATION

discretization knots arg = i¢h, i = 1,---, N, with N = 256,
h =1/N and . The perturbed discrete data are given by

o) = f(ta) + e,

where{e; }I¥, are generated by Functieandn(N +1,1) x &;

in Matlab. All examples are computed by using Matlab with

parameters = 1.01.
Example 1 The function

£(2) = explcos(z)).
is a periodic analytic function with

J(#)ly=o0 = exp(cos())

The L2—norm relative errors and the maximum-norm reld11l]
tive errors are given in the tables 1, 2 to verify the theosdti
results. Fig. 1 is also given to compare qualitatively thg2]

computed solutions and the exact ones. All of the resulta/sho ,
[13] A. G. Ramm, The ground-penetrating radar problem,dllinverse Ill-

that the new method works well.

V. CONCLUTION

Fig. 1.

(b) imaginary part ayy = 1

Results of Examplel with = 0.1
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to give a stable analytic continuation of the periodic atialy
function. The theoretical and numerical results indichéd the
discrepancy principle can work well if we can find a suitable
approximation even for severely ill-posed problem.
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