Search results for: paste layer thickness
415 Neural Network Based Speech to Text in Malay Language
Authors: H. F. A. Abdul Ghani, R. R. Porle
Abstract:
Speech to text in Malay language is a system that converts Malay speech into text. The Malay language recognition system is still limited, thus, this paper aims to investigate the performance of ten Malay words obtained from the online Malay news. The methodology consists of three stages, which are preprocessing, feature extraction, and speech classification. In preprocessing stage, the speech samples are filtered using pre emphasis. After that, feature extraction method is applied to the samples using Mel Frequency Cepstrum Coefficient (MFCC). Lastly, speech classification is performed using Feedforward Neural Network (FFNN). The accuracy of the classification is further investigated based on the hidden layer size. From experimentation, the classifier with 40 hidden neurons shows the highest classification rate which is 94%.
Keywords: Feed-Forward Neural Network, FFNN, Malay speech recognition, Mel Frequency Cepstrum Coefficient, MFCC, speech-to-text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746414 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks
Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei
Abstract:
An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531413 Work Function Engineering of Functionally Graded ZnO+Ga2O3 Thin Film for Solar Cell and Organic Light Emitting Diodes Applications
Authors: Yong-Taeg Oh, Won Song, Seok-Eui Choi, Bo-Ra Koo, Dong-Chan Shin
Abstract:
ZnO+Ga2O3 functionally graded thin films (FGTFs) were examined for their potential use as Solar cell and organic light emitting diodes (OLEDs). FGTF transparent conducting oxides (TCO) were fabricated by combinatorial RF magnetron sputtering. The composition gradient was controlled up to 10% by changing the plasma power of the two sputter guns. A Ga2O3+ZnO graded region was placed on the top layer of ZnO. The FGTFs showed up to 80% transmittance. Their surface resistances were reduced to < 10% by increasing the Ga2O3: pure ZnO ratio in the TCO. The FGTFs- work functions could be controlled within a range of 0.18 eV. The controlled work function is a very promising technology because it reduces the contact resistance between the anode and Hall transport layers of OLED and solar cell devices.Keywords: Work Function, TCO, Functionally Graded Thin Films, Resistance, Transmittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369412 Optimal Multilayer Perceptron Structure For Classification of HIV Sub-Type Viruses
Authors: Zeyneb Kurt, Oguzhan Yavuz
Abstract:
The feature of HIV genome is in a wide range because of it is highly heterogeneous. Hence, the infection ability of the virus changes related with different chemokine receptors. From this point, R5 and X4 HIV viruses use CCR5 and CXCR5 coreceptors respectively while R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the coreceptors of HIV genome. The aim of this study is to develop the optimal Multilayer Perceptron (MLP) for high classification accuracy of HIV sub-type viruses. To accomplish this purpose, the unit number in hidden layer was incremented one by one, from one to a particular number. The statistical data of R5X4, R5 and X4 viruses was preprocessed by the signal processing methods. Accessible residues of these virus sequences were extracted and modeled by Auto-Regressive Model (AR) due to the dimension of residues is large and different from each other. Finally the pre-processed dataset was used to evolve MLP with various number of hidden units to determine R5X4 viruses. Furthermore, ROC analysis was used to figure out the optimal MLP structure.Keywords: Multilayer Perceptron, Auto-Regressive Model, HIV, ROC Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440411 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells
Authors: András Szekrényes
Abstract:
Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.
Keywords: J-integral, Lévy method, third-order shell theory, state space solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600410 Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder
Authors: Y. Obikane , M.Kaneko, K.Kakioka, K.Ogura
Abstract:
The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.Keywords: Supercavitation, density gradient correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526409 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation
Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin
Abstract:
The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.
Keywords: Biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105408 Performance Evaluation of XMAC and BMAC Routing Protocol under Static and Mobility Scenarios in Wireless Sensor Network
Authors: M. V. Ramana Rao, T. Adilakshmi
Abstract:
Based on application requirements, nodes are static or mobile in Wireless Sensor Networks (WSNs). Mobility poses challenges in protocol design, especially at the link layer requiring mobility adaptation algorithms to localize mobile nodes and predict link quality to be established with them. This study implements XMAC and Berkeley Media Access Control (BMAC) routing protocols to evaluate performance under WSN’s static and mobility conditions. This paper gives a comparative study of mobility-aware MAC protocols. Routing protocol performance, based on Average End to End Delay, Average Packet Delivery Ratio, Average Number of hops, and Jitter is evaluated.Keywords: Wireless Sensor Network (WSN), Medium Access Control (MAC), Berkeley Media Access Control (BMAC), mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382407 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor
Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung
Abstract:
The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V·s at 250°C.
Keywords: Single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, Thin-film transistor (TFT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789406 Effect of the Support Shape on Fischer-Tropsch Cobalt Catalyst Performance
Authors: Jian Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying
Abstract:
Cobalt catalysts were supported on extruded silica carrier and different-type (SiO2, γ-Al2O3) commercial supports with different shapes and sizes to produce heavy hydrocarbons for Fischer-Tropsch synthesis. The catalysts were characterized by N2 physisorption and H2-TPR. The catalytic performance of the catalysts was tested in a fixed bed reactor. The results of Fischer-Tropsch synthesis performance showed that the cobalt catalyst supported on spherical silica supports displayed a higher activity and a higher selectivity to C5+ products, due to the fact that the active components were only distributed in the surface layer of spherical carrier, and the influence of gas diffusion restriction on catalytic performance was weakened. Therefore, it can be concluded that the eggshell cobalt catalyst was superior to precious metals modified catalysts in the synthesis of heavy hydrocarbons.
Keywords: Fischer-Tropsch synthesis, cobalt catalyst, support shape, heavy hydrocarbons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765405 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform
Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo
Abstract:
The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.
Keywords: Energy-efficient, fog computing, IoT, telehealth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152404 Simulation Study on Vehicle Drag Reduction by Surface Dimples
Authors: S. F. Wong, S. S. Dol
Abstract:
Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.
Keywords: Aerodynamics, Boundary Layer, Dimple, Drag, Kinetic Energy, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348403 Effect of pH and Ionic Exchange on the Reactivity of Bioglass/Chitosan Composites Used as a Bone Graft Substitute
Authors: Samira Jebahi, Hassane Oudadesse, Eric Wers, Jiheun Elleuch, Hafedh Elfekih, Hassib Keskes, Xuan Vuong Bui, Abdelfatteh Elfeki
Abstract:
Chitosan (CH) material reinforced by bioactive glass (46S6) was fabricated. 46S6 containing 17% wt% CH was studied in vitro and in vivo. Physicochemical techniques, such as Fourier transform infrared spectroscopy (FT-IR), coupled plasma optical emission spectrometry (ICP-OES) analysis were used. The behavior of 46S6CH17 was studied by measuring the in situ pH in a SBF solution. The 46S6CH17 was implanted in the rat femoral condyl. In vitro 46S6CH17 gave an FTIR - spectrum in which three absorption bands with the maxima at 565, 603 and 1039cm-1 after 3 days of soaking in physiological solution. They are assigned to stretching vibrations of PO4^3- group in phosphate crystalline. Moreover, the pH measurement was decreased in the SBF solution. The stability of the calcium phosphate precipitation depended on the pH value. In vivo, a rise in the Ca and phosphate P ions concentrations in the implanted microenvironment was determined.
Keywords: Bioglass, Chitosan, pH measurement, Hydroxyapatite Carbonateted Layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911402 One-Dimensional Numerical Investigation of a Cylindrical Micro-Combustor Applying Electrohydrodynamics Effect
Authors: Behrouzinia P., Irani R. A., Saidi M.H.
Abstract:
In this paper, a one-dimensional numerical approach is used to study the effect of applying electrohydrodynamics on the temperature and species mass fraction profiles along the microcombustor. Premixed mixture is H2-Air with a multi-step chemistry (9 species and 19 reactions). In the micro-scale combustion because of the increasing ratio of area-to-volume, thermal and radical quenching mechanisms are important. Also, there is a significant heat loss from the combustor walls. By inserting a number of electrodes into micro-combustor and applying high voltage to them corona discharge occurs. This leads in moving of induced ions toward natural molecules and colliding with them. So this phenomenon causes the movement of the molecules and reattaches the flow to the walls. It increases the velocity near the walls that reduces the wall boundary layer. Consequently, applying electrohydrodynamics mechanism can enhance the temperature profile in the microcombustor. Ultimately, it prevents the flame quenching in microcombustor.Keywords: micro-combustor, electrohydrodynamics, temperature profile, wall quenching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807401 Assessment of Energy Demand Considering Different Model Simulations in a Low Energy Demand House
Authors: M. Cañada-Soriano, C. Aparicio-Fernández, P. Sebastián Ferrer Gisbert, M. Val Field, J.-L. Vivancos-Bono
Abstract:
The lack of insulation along with the existence of air leakages constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, the Blower Door test can be used. It is a standardized procedure that determines the airtightness of a space by characterizing the rate of air leakages through the envelope surface. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place such as the infrared thermography. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house, refurbished under the Passive House standard, using the Blower Door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to estimate the energy demand in different scenarios. In this sense, a sequential implementation of three different energy improvement measures (insulation thickness, glazing type and infiltrations) have been analyzed.
Keywords: Airtightness, blower door, TRNSYS, infrared thermography, energy demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221400 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.
Keywords: Circular shear panel damper, FE analysis, Hysteretic behavior, Large deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550399 Tailormade Geometric Properties of Chitosan by Gamma Irradiation
Authors: F. Elashhab, L. Sheha, R. Fawzi Elsupikhe, A. E. A. Youssef, R. M. Sheltami, T. Alfazani
Abstract:
Chitosans, CSs, in solution are increasingly used in a range of geometric properties in various academic and industrial sectors, especially in the domain of pharmaceutical and biomedical engineering. In order to provide a tailoring guide of CSs to the applicants, gamma (γ)-irradiation technology and simple viscosity measurements have been used in this study. Accordingly, CS solid discs (0.5 cm thickness and 2.5 cm diameter) were exposed in air to Cobalt-60 (γ)-radiation, at room temperature and constant 50 kGy dose for different periods of exposer time (tγ). Diluted solutions of native and different irradiated CS were then prepared by dissolving 1.25 mg cm-3 of each polymer in 0.1 M NaCl/0.2 M CH3COOH. The single-concentration relative viscosity (ƞr) measurements were employed to obtain their intrinsic viscosity ([ƞ]) values and interrelated parameters, like: the molar mass (Mƞ), hydrodynamic radiuses (RH,ƞ), radius of gyration (RG,ƞ), and second virial coefficient (A2,ƞ) of CSs in the solution. The results show an exponential decrease of ƞr, [ƞ], Mƞ, RH,ƞ and RG,ƞ with increasing tγ. This suggests the influence of random chain-scission of CSs glycosidic bonds, with rate constant kr and kr-1 (lifetime τr ~ 0.017 min-1 and 57.14 min, respectively). The results also show an exponential decrease of A2ƞ with increasing tγ, which can be attributed to the growth of excluded volume effect in CS segments by tγ and, hence, better solution quality. The results are represented in following scaling laws as a tailoring guide to the applicants: RH,ƞ = 6.98 x 10-3 Mr0.65; RG,ƞ = 7.09 x 10-4 Mr0.83; A2,ƞ = 121.03 Mƞ,r-0.19.
Keywords: Gamma irradiation, geometric properties, kinetic model, scaling laws, viscosity measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407398 Validity Domains of Beams Behavioural Models: Efficiency and Reduction with Artificial Neural Networks
Authors: Keny Ordaz-Hernandez, Xavier Fischer, Fouad Bennis
Abstract:
In a particular case of behavioural model reduction by ANNs, a validity domain shortening has been found. In mechanics, as in other domains, the notion of validity domain allows the engineer to choose a valid model for a particular analysis or simulation. In the study of mechanical behaviour for a cantilever beam (using linear and non-linear models), Multi-Layer Perceptron (MLP) Backpropagation (BP) networks have been applied as model reduction technique. This reduced model is constructed to be more efficient than the non-reduced model. Within a less extended domain, the ANN reduced model estimates correctly the non-linear response, with a lower computational cost. It has been found that the neural network model is not able to approximate the linear behaviour while it does approximate the non-linear behaviour very well. The details of the case are provided with an example of the cantilever beam behaviour modelling.
Keywords: artificial neural network, validity domain, cantileverbeam, non-linear behaviour, model reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428397 A Subjective Scheduler Based on Backpropagation Neural Network for Formulating a Real-life Scheduling Situation
Authors: K. G. Anilkumar, T. Tanprasert
Abstract:
This paper presents a subjective job scheduler based on a 3-layer Backpropagation Neural Network (BPNN) and a greedy alignment procedure in order formulates a real-life situation. The BPNN estimates critical values of jobs based on the given subjective criteria. The scheduler is formulated in such a way that, at each time period, the most critical job is selected from the job queue and is transferred into a single machine before the next periodic job arrives. If the selected job is one of the oldest jobs in the queue and its deadline is less than that of the arrival time of the current job, then there is an update of the deadline of the job is assigned in order to prevent the critical job from its elimination. The proposed satisfiability criteria indicates that the satisfaction of the scheduler with respect to performance of the BPNN, validity of the jobs and the feasibility of the scheduler.Keywords: Backpropagation algorithm, Critical value, Greedy alignment procedure, Neural network, Subjective criteria, Satisfiability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486396 Dissolution of Zeolite as a Sorbent in Flue Gas Desulphurization Process Using a pH Stat Apparatus
Authors: Hilary Rutto, John Kabuba
Abstract:
Sulphur dioxide is a harmful gaseous product that needs to be minimized in the atmosphere. This research work investigates the use of zeolite as a possible additive that can improve the sulphur dioxide capture in wet flue gas desulphurisation dissolution process. This work determines the effect of temperature, solid to liquid ratio, acid concentration and stirring speed on the leaching of zeolite using a pH stat apparatus. The atomic absorption spectrometer was used to measure the calcium ions from the solution. It was found that the dissolution rate of zeolite decreased with increase in solid to liquid ratio and increases with increase in temperature, stirring speed and acid concentration. The activation energy for the dissolution rate of zeolite in hydrochloric acid was found to be 9.29kJ/mol. and therefore the product layer diffusion was the rate limiting step.
Keywords: Calcium ion, pH stat apparatus, wet flue gas desulphurization, zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102395 Numerical Simulation of the Turbulent Flow over a Three-Dimensional Flat Roof
Authors: M. Raciti Castelli, A. Castelli, E. Benini
Abstract:
The flow field over a flat roof model building has been numerically investigated in order to determine threedimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data. Wind tunnel measurements and numerical predictions have been compared for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions. The proposed calculations have allowed the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a three-dimensional roof architecture dominated by flow separation.
Keywords: CFD, roof, building, wind
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734394 Structural Characteristics of Batch Processed Agro-Waste Fibres
Authors: E. I. Akpan, S. O. Adeosun, G. I. Lawal, S. A. Balogun, X. D. Chen
Abstract:
The characterisation of agro-wastes fibres for composite applications from Nigeria using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) has been done. Fibres extracted from groundnut shell, coconut husk, rice husk, palm fruit bunch and palm fruit stalk are processed using two novel cellulose fibre production methods developed by the authors. Cellulose apparent crystallinity calculated using the deconvolution of the diffractometer trace shows that the amorphous portion of cellulose was permeable to hydrolysis yielding high crystallinity after treatment. All diffratograms show typical cellulose structure with well-defined 110, 200 and 040 peaks. Palm fruit fibres had the highest 200 crystalline cellulose peaks compared to others and it is an indication of rich cellulose content. Surface examination of the resulting fibres using SEM indicates the presence of regular cellulose network structure with some agglomerated laminated layer of thin leaves of cellulose microfibrils. The surfaces were relatively smooth indicating the removal of hemicellulose, lignin and pectin.
Keywords: X-ray diffraction, SEM, cellulose, deconvolution, crystallinity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731393 Effect of Chemical Pretreatments and Dehydration Methods on Quality Characteristics of Tomato Powder and Its Storage Stability
Authors: Reihaneh Ahmadzadeh Ghavidel, Mehdi Ghiafeh Davoodi
Abstract:
Dehydration process was carried out for tomato slices of var. Avinash after giving different pre-treatments such as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl). Untreated samples served as control. Solar drier and continuous conveyor (tunnel) drier were used for dehydration. Quality characteristics of tomato slices viz. moisture content, sugar, titratable acidity, lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning as affected by dehydration process were studied. Storage study was also carried out for a period of six months for tomato powder packed into different types of packaging materials viz. metalized polyester (MP) film and low density poly ethylene (LDPE). Changes in lycopene content and non-enzymatic browning (NEB) were estimated during storage at room temperature. Pretreatment of 5 mm thickness of tomato slices with calcium chloride in combination with potassium metabisulphite and drying using a tunnel drier with subsequent storage of product in metalized polyester bags was selected as the best process.
Keywords: Drying pretreatments, Solar drying, Tomato powder, Tunnel drying
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838392 Development of Light-Weight Fibre-Based Materials for Building Envelopes
Authors: René Čechmánek, Vladan Prachař, Ludvík Lederer, Jiří Loskot
Abstract:
Thin-walled elements with a matrix set on a base of high-valuable Portland cement with dispersed reinforcement from alkali-resistant glass fibres are used in a range of applications as claddings of buildings and infrastructure constructions as well as various architectural elements of residential buildings. Even though their elementary thickness and therefore total weight is quite low, architects and building companies demand on even further decreasing of the bulk density of these fibre-cement elements for the reason of loading elimination of connected superstructures and easier assembling in demand conditions. By the means of various kinds of light-weight aggregates it is possible to achieve light-weighing of these composite elements. From the range of possible fillers with different material properties granulated expanded glass worked the best. By the means of laboratory testing an effect of two fillers based on expanded glass on the fibre reinforced cement composite was verified. Practical applicability was tested in the production of commonly manufactured glass fibre reinforced concrete elements, such as channels for electrical cable deposition, products for urban equipment and especially various cladding elements. Even though these are not structural elements, it is necessary to evaluate also strength characteristics and resistance to environment for their durability in certain applications.
Keywords: Fibre-cement composite, granulated expanded glass, light-weighing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003391 The Shaping of a Triangle Steel Plate into an Equilateral Vertical Steel by Finite-Element Modeling
Authors: Tsung-Chia Chen
Abstract:
The orthogonal processes to shape the triangle steel plate into a equilateral vertical steel are examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation. The highly non-linear problems due to the geometric changes, the inelastic constitutive behavior and the boundary conditions varied with deformation are taken into account in an incremental manner. On the contact boundary, a modified Coulomb friction mode is specially considered. A weighting factor r-minimum is employed to limit the step size of loading increment to linear relation. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The simulated geometries of verticality could clearly demonstrate the vertical processes until unloading. A series of experiments and simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress, strain and thickness during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Therefore, this modeling can be used for judging whether a equilateral vertical steel can be shaped successfully. The present work may be expected to improve the understanding of the formation of the equilateral vertical steel.
Keywords: Elasto-plastic, finite element, orthogonal pressing process, vertical steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352390 Numerical Analysis of Jet Grouting Strengthened Pile under Lateral Loading
Authors: Reza Ziaie Moayed, Naeem Gholampoor
Abstract:
Jet grouting strengthened pile (JPP) is one of composite piles used in soft ground improvement. It may improve the vertical and lateral bearing capacity effectively and it has been practically used in a considerable scale. In order to make a further research on load transfer mechanism of single JPP with and without cap under lateral loads, JPP is analyzed by means of FEM analysis. It is resulted that the JPP pile could improve lateral bearing capacity by compared with bored concrete pile which is higher for shorter pile and the biggest bending moment of JPP pile is located in the depth of around 48% of embedded length of the pile. Meanwhile, increase of JPP pile length causes to increase of peak mobilized bending moment. Also, by cap addition, JPP piles will have a much higher lateral bearing capacity and increasing in cohesion of soil layer resulted to increase of lateral bearing capacity of JPP pile. In addition, the numerical results basically coincide with the experimental results presented by other researchers.Keywords: Bending moment, FEM analysis, JPP pile, lateral bearing capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323389 Porous Effect on Heat Transfer of Non Uniform Velocity Inlet Flow Using LBM
Authors: A. Hasanpour, M. Farhadi, K.Sedighi, H.R.Ashorynejad
Abstract:
A numerical study of flow in a horizontally channel partially filled with a porous screen with non-uniform inlet has been performed by lattice Boltzmann method (LBM). The flow in porous layer has been simulated by the Brinkman-Forchheimer model. Numerical solutions have been obtained for variable porosity models and the effects of Darcy number and porosity have been studied in detail. It is found that the flow stabilization is reliant on the Darcy number. Also the results show that the stabilization of flow field and heat transfer is depended to Darcy number. Distribution of stream field becomes more stable by decreasing Darcy number. Results illustrate that the effect of variable porosity is significant just in the region of the solid boundary. In addition, difference between constant and variable porosity models is decreased by decreasing the Darcy number.Keywords: Lattice Boltzmann Method, Porous Media, Variable Porosity, Flow Stabilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929388 A Decision Matrix for the Evaluation of Triplestores for Use in a Virtual Research Environment
Authors: Tristan O’Neill, Trina Myers, Jarrod Trevathan
Abstract:
The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for cross-domain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.
Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704387 Experiment Study on the Influence of Tool Materials on the Drilling of Thick Stacked Plate of 2219 Aluminum Alloy
Authors: G. H. Li, M. Liu, H. J. Qi, Q. Zhu, W. Z. He
Abstract:
The drilling and riveting processes are widely used in the assembly of carrier rocket, which makes the efficiency and quality of drilling become the important factor affecting the assembly process. According to the problem existing in the drilling of thick stacked plate (thickness larger than 10mm) of carrier rocket, such as drill break, large noise and burr etc., experimental study of the influence of tool material on the drilling was carried out. The cutting force was measured by a piezoelectric dynamometer, the aperture was measured with an outline projector, and the burr is observed and measured by a digital stereo microscope. Through the measurement, the effects of tool material on the drilling were analyzed from the aspects of drilling force, diameter, and burr. The results show that, compared with carbide drill and coated carbide one, the drilling force of high speed steel is larger. But, the application of high speed steel also has some advantages, e.g. a higher number of hole can be obtained, the height of burr is small, the exit is smooth and the slim burr is less, and the tool experiences wear but not fracture. Therefore, the high speed steel tool is suitable for the drilling of thick stacked plate of 2219 Aluminum alloy.
Keywords: 2219 aluminum alloy, thick stacked plate, drilling, tool material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283386 Experimental Study on Machinability of Laser- Sintered Material in Ball End Milling
Authors: Abdullah Yassin, Takashi Ueda, Syed Tarmizi Syed Shazali
Abstract:
This paper presents an experimental investigation on the machinability of laser-sintered material using small ball end mill focusing on wear mechanisms. Laser-sintered material was produced by irradiating a laser beam on a layer of loose fine SCM-Ni-Cu powder. Bulk carbon steel JIS S55C was selected as a reference steel. The effects of powder consolidation mechanisms and unsintered powder on the tool life and wear mechanisms were carried out. Results indicated that tool life in cutting laser-sintered material is lower than that in cutting JIS S55C. Adhesion of the work material and chipping were the main wear mechanisms of the ball end mill in cutting laser-sintered material. Cutting with the unsintered powder surrounding the tool and laser-sintered material had caused major fracture on the cutting edge.Keywords: Laser-sintered material, tool life, wear mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888