Effect of pH and Ionic Exchange on the Reactivity of Bioglass/Chitosan Composites Used as a Bone Graft Substitute
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Effect of pH and Ionic Exchange on the Reactivity of Bioglass/Chitosan Composites Used as a Bone Graft Substitute

Authors: Samira Jebahi, Hassane Oudadesse, Eric Wers, Jiheun Elleuch, Hafedh Elfekih, Hassib Keskes, Xuan Vuong Bui, Abdelfatteh Elfeki

Abstract:

Chitosan (CH) material reinforced by bioactive glass (46S6) was fabricated. 46S6 containing 17% wt% CH was studied in vitro and in vivo. Physicochemical techniques, such as Fourier transform infrared spectroscopy (FT-IR), coupled plasma optical emission spectrometry (ICP-OES) analysis were used. The behavior of 46S6CH17 was studied by measuring the in situ pH in a SBF solution. The 46S6CH17 was implanted in the rat femoral condyl. In vitro 46S6CH17 gave an FTIR - spectrum in which three absorption bands with the maxima at 565, 603 and 1039cm-1 after 3 days of soaking in physiological solution. They are assigned to stretching vibrations of PO4^3- group in phosphate crystalline. Moreover, the pH measurement was decreased in the SBF solution. The stability of the calcium phosphate precipitation depended on the pH value. In vivo, a rise in the Ca and phosphate P ions concentrations in the implanted microenvironment was determined.

Keywords: Bioglass, Chitosan, pH measurement, Hydroxyapatite Carbonateted Layer.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088500

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915

References:


[1] R.A. Muzzarelli, F. Tanfani, M. Emanuelli, D. P. Pace, E. Chiumzzi, “Sulfated n-(carboxymethyl) chitosans: novel blood anticoagulants,” Carbohydr Res., Vol.126, NO.2, pp.225-31, Mar. 1984.
[2] X.D. Liua, S. Tokurab, N. Nishia, N. Sakairi, “A novel method for immobilization of chitosan onto nonporous glass beads through a 1,3- thiazolidine linker”, J Polymer., Vol. 44, NO.4, pp. 1021-1026. Feb. 2003.
[3] M. Guiping, DongzhY. i, Kennedy J. F., Jun N., “Synthesize and characterization of organic-soluble acylated chitosan”, Carbohyd Polym., VOL. 75, NO.3. PP. 390–394, Feb. 2009.
[4] N. Annabi, J. W. Nichol, Zhong X , C. Ji, S. Koshy, A. Khademhosseini, F. Dehghani., “Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering”, Eng Part B Rev., VOL. 16, NO.4. PP. 371–383, Aug. 2010.
[5] G. Chen, T. Ushida, T. Tateishi., “Development of biodegradable porous scaffolds for tissue engineering”. J. Mater Sci Eng C., Vol. 5, NO.2. pp.77–83, Jun. 2002.
[6] D. Eberli, F. L. Freitas, A. Atala, J. J. Yoo., “Composite scaffolds for the engineering of hollow organs and tissues”. Methods, VOL. 47, NO.2.PP. 109-15, Feb. 2009.
[7] A. Bahetia, L. Kumarb, A.K.Bansal., J “Excipients used in lyophilization of small molecules”. Excipients and Food Chem., VOL. 1, NO.1.PP. 41, Jun. 2010.
[8] WW. Thein-Han, J. Saikhun, C Pholpramoo, R. D. Misra, Y. Kitiyanant, “chitosan–gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of gfp–buffalo embryonic stem cells”, Acta Biomater, VOL. 5, NO. 9, PP. 3453–3466, Nov. 2009.
[9] M. Mami, A. Lucas-Girota, H. Oudadesse, R. Dorbez-Sridib, F. Mezahia, E. Dietrich , “Investigation of the surface reactivity of a sol– gel derived glass in the ternary system SiO2–CaO–P2O5”, App Sur Sci, VOL. 254, NO. 22, PP. 7386–7393, Sep. 2008.
[10] S. Jebahi, H. Oudadesse, H. El Feki, T. Rebai, H. Keskes, P. Pellen, A. El Feki, “Antioxidative/oxidative effects of strontium-doped bioactive glass as bone graft. In vivo assays in ovariectomised rats,” J Appl Biomed. VOL. 254, PP. 195–2097, Jan. 2012.
[11] X. V. Bui, H. Oudadesse, Y. Le Gal, O. Merdrignac-Conanec, G. Cathelineau. “Bioactivity behaviour of biodegradable material comprising bioactive glass,” Korean J Chem Eng, VOL. 29, NO. 2, PP. 215-220, Feb. 2012.
[12] E. Dietrich, H. Oudadesse, M. Le Floch, B. Bureau, T. Gloriant . “In vitro Chemical Reactivity of Doped Bioactive Glasses: an Original Approach by Solid-State NMR Spectroscopy,“ Adv Eng Mater ,VOL. 11, , NO. 8, PP. B98–B105, Aug. 2009.
[13] S. Jebahi, H. Oudadesse, X.V. Bui, H. Keskes, T. Rebai, A. El Feki , H. El Feki “Repair of bone defect using bioglass-chitosan as a pharmaceutical drug: An experimental study in an ovariectomised rat model”. Afr J Phar Pharm, vol. 6, no. 16, pp. 1276 - 1287, Apr. 2012.
[14] S. Jebahi, R. Nsiri, M. Boujbiha, E. Bouroga, T. Rebai, H. Keskes, A. El Feki, H. Oudadesse, H. El Feki “The impact of orthopedic device associated with carbonated hydroxyapatite on the oxidative balance: experimental study of bone healing rabbit model”. Eur J Orthop Surg Traumatol. Oct. 2012. (Epub ahead of print).
[15] K. H. Karlsson, R. Backman, M. Hupa “An equilibrium study of phosphate precipitation in bioactive glass,”. Key Eng Mater, vol. 220, pp. 103–7. 2002.
[16] V. Banchet, J. Michel, E. Jallot, L. Wortham, S. Bouthors, D. Laurent- Maquin “Interfacial reactions of glasses for biomedical application by scanning transmission electron microscopy and microanalysis“, Acta Biomater, vol. 2, No 3. pp. 349–59. May. 2006.
[17] X. Lu, Y. Leng. “Theoretical analysis of calcium phosphate precipitation in simulated body fluid”, Biomaterials, vol. 2 6, No10. pp. 1097–108. Apr.2005.
[18] S. Jebahi, M. Saoudi, R. Badraoui, H. Oudadesse, Z. Ellouz, H. Keskese, A. El Feki, H. El Feki, “Biologic Response to Carbonated Hydroxyapatite Associated with Orthopedic Device: Experimental Study in a Rabbit Model,” Kor J Path, vol. 4 6, No1. pp. 48-54. JAN. 2012.
[19] H. Oudadesse, E. Dietrich , Y. L GAL, P .Pellen, B. Bureau, AA. Mostapha, G .Cathelineau “Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses,” Biomed Mater, vol. 6, no. 3, pp. 20, Jun. 2011.
[20] E. Dietrich, H. Oudadesse, A. Lucas-Girot, M. Mami “In vitro bioactivity of melt-derived glass 46S6 doped with magnesium”. J Biomed Mater Res A, vol. 88, no. 4, pp. 1087-96, Mar. 2009.
[21] Neyman K. M., Rösch N. “Bonding and vibrations of CO molecules adsorbed at transition metal impurity sites on the MgO (001) surface. A density functional model cluster study”, Chemical Physics, vol. 177, no. 2, pp. 561–570, Nov. 1993.
[22] J.R. Jones, P. Sepulveda, L.L. Hench. “Dose dependent behavior of bioactive glass dissolution,” J Biomed Mater Res , vol. 58, No 6 , pp. 58:720, 2001.
[23] M. Cerrutia, D. Greenspan, K. Powers. “Effect of pH and ionic strength on the reactivity of Bioglasss 45S5”. Biomaterials, vol. 26, no. 14, pp. 1665-74, May. 2005.
[24] M. Ashok, N. Meenakshi Sundaram, S. Narayana Kalkura. “Crystallization of hydroxyapatite at physiological temperature”. Mater Lett, vol. 57, no. 14, pp. 2066–2070, May. 2005.
[25] Zhang Di, Mikko Hupa, Leena Hupa. “In situ pH within particle beds of bioactive glasses”. Acta Biomaterialia, vol. 4, no. 5, pp. 1498-505, Sep. 2008.
[26] L. L. Hench, R. J. Splinter, W. C. Allen, T. K. Greenlee. “Bonding mechanisms at the interface of ceramic prosthetic materials”. J Biomed Mater Res Symp, vol. 5, no. 6, pp. 117–141, Nov. 1971.
[27] M.G. Cerruti, D. Greenspan, K. Powers. “An analytical model for the dissolution of different particle size samples of bioglass_ in TRIS buffered solution”, Biomaterials, vol. 26, no. 24, pp. 4903-11, Aug. 2005.
[28] D.C. Greenspan, I.P. Zhong, G.P. La Torre. “Effect of surface area to volume ratio on in vitro surface reactions of bioactive glass particulates”. Bioceramics, vol. 7, pp. 55–60, 1994.