Search results for: kinematic viscosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 336

Search results for: kinematic viscosity

336 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks

Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei

Abstract:

An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.

Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
335 Orthogonal Array Application and Response Surface Method Approach for Optimal Product Values: An Application for Oil Blending Process

Authors: Christopher C. Ihueze, Constance C. Obiuto, Christian E. Okafor, Charles C. Okpala

Abstract:

This paper presents a methodical approach for designing and optimizing process parameters in oil blending industries. Twenty seven replicated experiments were conducted for production of A-Z crown super oil (SAE20W/50) employing L9 orthogonal array to establish process response parameters. Power law model was fitted to experimental data and the obtained model was optimized applying the central composite design (CCD) of response surface methodology (RSM). Quadratic model was found to be significant for production of A-Z crown supper oil. The study recognized and specified four new lubricant formulations that conform to ISO oil standard in the course of analyzing the batch productions of A-Z crown supper oil as: L1: KV = 21.8293Cst, BS200 = 9430.00Litres, Ad102=11024.00Litres, PVI = 2520 Litres, L2: KV = 22.513Cst, BS200 = 12430.00 Litres, Ad102 = 11024.00 Litres, PVI = 2520 Litres, L3: KV = 22.1671Cst, BS200 = 9430.00 Litres, Ad102 = 10481.00 Litres, PVI= 2520 Litres, L4: KV = 22.8605Cst, BS200 = 12430.00 Litres, Ad102 = 10481.00 Litres, PVI = 2520 Litres. The analysis of variance showed that quadratic model is significant for kinematic viscosity production while the R-sq value statistic of 0.99936 showed that the variation of kinematic viscosity is due to its relationship with the control factors. This study therefore resulted to appropriate blending proportions of lubricants base oil and additives and recommends the optimal kinematic viscosity of A-Z crown super oil (SAE20W/50) to be 22.86Cst.

Keywords: Additives, control factors, kinematic viscosity, lubricant, orthogonal array, process parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
334 Kinematic Modelling and Maneuvering of A 5-Axes Articulated Robot Arm

Authors: T.C. Manjunath

Abstract:

This paper features the kinematic modelling of a 5-axis stationary articulated robot arm which is used for doing successful robotic manipulation task in its workspace. To start with, a 5-axes articulated robot was designed entirely from scratch and from indigenous components and a brief kinematic modelling was performed and using this kinematic model, the pick and place task was performed successfully in the work space of the robot. A user friendly GUI was developed in C++ language which was used to perform the successful robotic manipulation task using the developed mathematical kinematic model. This developed kinematic model also incorporates the obstacle avoiding algorithms also during the pick and place operation.

Keywords: Robot, Sensors, Kinematics, Computer, Control, PNP, LCD, Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4412
333 Kinematic Analysis of an Assistive Robotic Leg for Hemiplegic and Hemiparetic Patients

Authors: M.R. Safizadeh, M. Hussein, K. F. Samat, M.S. Che Kob, M.S. Yaacob, M.Z. Md Zain

Abstract:

The aim of this paper is to present the kinematic analysis and mechanism design of an assistive robotic leg for hemiplegic and hemiparetic patients. In this work, the priority is to design and develop the lightweight, effective and single driver mechanism on the basis of experimental hip and knee angles- data for walking speed of 1 km/h. A mechanism of cam-follower with three links is suggested for this purpose. The kinematic analysis is carried out and analysed using commercialized MATLAB software based on the prototype-s links sizes and kinematic relationships. In order to verify the kinematic analysis of the prototype, kinematic analysis data are compared with the experimental data. A good agreement between them proves that the anthropomorphic design of the lower extremity exoskeleton follows the human walking gait.

Keywords: Kinematic analysis, assistive robotic leg, lower extremity exoskeleton, cam-follower mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
332 Experimental and Theoretical Study of Melt Viscosity in Injection Process

Authors: Chung-Chih Lin, Wen-Teng Wang, Chin-Chiuan Kuo, Chieh-Liang Wu

Abstract:

The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality.

Keywords: Injection molding, melt viscosity, injection quality, injection speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4322
331 Optimization of Inverse Kinematics of a 3R Robotic Manipulator using Genetic Algorithms

Authors: J. Ramírez A., A. Rubiano F.

Abstract:

In this paper the direct kinematic model of a multiple applications three degrees of freedom industrial manipulator, was developed using the homogeneous transformation matrices and the Denavit - Hartenberg parameters, likewise the inverse kinematic model was developed using the same method, verifying that in the workload border the inverse kinematic presents considerable errors, therefore a genetic algorithm was implemented to optimize the model improving greatly the efficiency of the model.

Keywords: Direct Kinematic, Genetic Algorithm, InverseKinematic, Optimization, Robot Manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3285
330 Generalized Chaplygin Gas and Varying Bulk Viscosity in Lyra Geometry

Authors: A. K. Sethi, R. N. Patra, B. Nayak

Abstract:

In this paper, we have considered Friedmann-Robertson-Walker (FRW) metric with generalized Chaplygin gas which has viscosity in the context of Lyra geometry. The viscosity is considered in two different ways (i.e. zero viscosity, non-constant r (rho)-dependent bulk viscosity) using constant deceleration parameter which concluded that, for a special case, the viscous generalized Chaplygin gas reduces to modified Chaplygin gas. The represented model indicates on the presence of Chaplygin gas in the Universe. Observational constraints are applied and discussed on the physical and geometrical nature of the Universe.

Keywords: Bulk viscosity, Lyra geometry, generalized Chaplygin gas, cosmology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
329 Microalgae-based Oil for Biodiesel Production

Authors: Marc Veillette, Mostafa Chamoumi, Nathalie Faucheux, Michèle Heitz

Abstract:

Biodiesel is traditionally produced from oleaginous plants. On the other hand, increasing biodiesel production from these raw materials could create problems of food supply. Producing biodiesel from microalgae could help to overcome this difficulty, because microalgae are rich in lipids and do not compete for arable lands. However, no studies had compared vegetable and microalgae oil-based biodiesel in terms of yield, viscosity and heat of combustion. In the present study, commercial canola and microalgae oil were therefore transesterified with methanol under a homogenous alkali catalyst (potassium hydroxide) at 100oC for 1h. The result showed that microalgae-based oil has a higher yield in biodiesel with 89.7% (g biodiesel/g oil) and a lower kinematic viscosity (22oC) of 4.31 mm/s2 than canola oil.

Keywords: Biodiesel, microalgae, canola, alkalitransesterification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
328 Affect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study

Authors: A.N. Ilia Anisa, Abdurahman H.Nour

Abstract:

The influence of viscosity on droplet diameter for water-in-crude oil (w/o) emulsion with two different ratios; 20-80 % and 50-50 % w/o emulsion was examined in the Brookfield Rotational Digital Rheometer. The emulsion was prepared with sorbitan sesquiolate (Span 83) act as emulsifier at varied temperature and stirring speed in rotation per minute (rpm). Results showed that the viscosity of w/o emulsion was strongly augmented by increasing volume of water and decreased the temperature. The changing of viscosity also altered the droplet size distribution. Changing of droplet diameter was depends on the viscosity and the behavior of emulsion either Newtonian or non-Newtonian.

Keywords: Diameter, phase ratio, viscosity, water-in-crude oil(w/o).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7642
327 Prediction of Natural Gas Viscosity using Artificial Neural Network Approach

Authors: E. Nemati Lay, M. Peymani, E. Sanjari

Abstract:

Prediction of viscosity of natural gas is an important parameter in the energy industries such as natural gas storage and transportation. In this study viscosity of different compositions of natural gas is modeled by using an artificial neural network (ANN) based on back-propagation method. A reliable database including more than 3841 experimental data of viscosity for testing and training of ANN is used. The designed neural network can predict the natural gas viscosity using pseudo-reduced pressure and pseudo-reduced temperature with AARD% of 0.221. The accuracy of designed ANN has been compared to other published empirical models. The comparison indicates that the proposed method can provide accurate results.

Keywords: Artificial neural network, Empirical correlation, Natural gas, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3180
326 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)

Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi

Abstract:

An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.

Keywords: genetic algorithm, nanofluids, neural network, viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
325 Kinematic and Dynamic Analysis of a Lower Limb Exoskeleton

Authors: Tawakal Hasnain Baluch, Adnan Masood, Javaid Iqbal, Umer Izhar, Umar Shahbaz Khan

Abstract:

This paper will provide the kinematic and dynamic analysis of a lower limb exoskeleton. The forward and inverse kinematics of proposed exoskeleton is performed using Denevit and Hartenberg method. The torques required for the actuators will be calculated using Lagrangian formulation technique. This research can be used to design the control of the proposed exoskeleton.

Keywords: Dynamic Analysis, Exoskeleton, Kinematic Analysis, Lower Limb, Rehabilitation Robotics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4536
324 Effect of Bentonite on the Properties of Liquid Insulating Oil

Authors: Loai Nasrat, Mervat S. Hassan

Abstract:

Bentonitic material from South Aswan, Egypt was evaluated in terms of mineral-ogy and chemical composition as bleaching clay in refining of transformer oil before and after acid activation and thermal treatment followed by acid leaching using HCl and H2SO4 for different contact times. Structural modification and refining power of bento-nite were investigated during modification by means of X-ray diffraction and infrared spectroscopy. The results revealed that the activated bentonite could be used for refining of transformer oil. The oil parameters such as; dielectric strength, viscosity and flash point had been improved. The dielectric breakdown strength of used oil increased from 29 kV for used oil treated with unactivated bentonite to 74 kV after treatment with activated bentonite. Kinematic Viscosity changed from 19 to 11 mm2 /s after treatment with activated bentonite. However, flash point achieved 149 ºC.

Keywords: Dielectric strength, unactivated bentonite, X-ray diffraction, SEM image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
323 The Relationship between Excreta Viscosity and TMEn in SBM

Authors: Ali Nouri Emamzadeh

Abstract:

The experiment was performed to study the relationship between excreta viscosity and Nitrogen-corrected true metabolisable energy quantities of soybean meals using conventional addition method (CAM) in adult cockerels for 7 d: a 3-d preexperiment and a 4-d experiment period. Results indicated that differences between the excreta viscosity values were (P<0.01) significant for SBMs. The excreta viscosity values were less (P<0.01) for SBMs 6, 2, 8, 1 and 3 than other SBMs. The mean TMEn (kcal/kg) values were significant (P<0.01) between SBMs. The most TMEn values were (P<0.01) for SBMs 6, 2, 8 and 1, also the lowest TMEn values were (P<0.01) for SBMs 3, 7, 4, 9 and 5. There was a reverse linear relationship between the values of excreta viscosity and TMEn in SBMs. In conclusion, there was a reverse linear relationship between the values of excreta viscosity and TMEn in SBMs probably due to their various soluble NSPs.

Keywords: soybean meals (SBMs), Nitrogen-corrected true metabolisable energy (TMEn), viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
322 Viscosity of Vegetable Oils and Biodiesel and Energy Generation

Authors: Thiago de O. Macedo, Roberto G. Pereira, Juan M. Pardal, Alexandre S. Soares, Valdir deJ. Lameira

Abstract:

The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.

Keywords: Biofuel, energy generation, vegetable oil, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9532
321 Role of Viscosity Ratio in Liquid-Liquid Jets under Radial Electric Field

Authors: Siddharth Gadkari, Rochish Thaokar

Abstract:

The effect of viscosity ratio (λ, defined as viscosity of surrounding medium/viscosity of fluid jet) on stability of axisymmetric (m=0) and asymmetric (m=1) modes of perturbation on a liquid-liquid jet in presence of radial electric field (E0 ), is studied using linear stability analysis. The viscosity ratio is shown to have a damping effect on both the modes of perturbation. However the effect was found more pronounced for the m=1 mode as compared to m=1 mode. Investigating the effect of both E0 and λ simultaneously, an operating diagram is generated, which clearly shows the regions of dominance of the two modes for a range of electric field and viscosity ratio values.

Keywords: liquid-liquid jet, axisymmetric perturbation, asymmetric perturbation, radial electric field

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
320 Design and Analysis of Flexible Slider Crank Mechanism

Authors: Thanh-Phong Dao, Shyh-Chour Huang

Abstract:

This study presents the optimal design and formulation of a kinematic model of a flexible slider crank mechanism. The objective of the proposed innovative design is to take extra advantage of the compliant mechanism and maximize the fatigue life by applying the Taguchi method. A formulated kinematic model is developed using a pseudo-rigid-body model (PRBM). By means of mathematic models, the kinematic behaviors of the flexible slider crank mechanism are captured using MATLAB software. Finite element analysis (FEA) is used to show the stress distribution. The results show that the optimal shape of the flexible hinge includes a force of 8.5N, a width of 9mm and a thickness of 1.1mm. Analysis of variance shows that the thickness of the proposed hinge is the most significant parameter, with an F test of 15.5. Finally, a prototype is manufactured to prepare for testing the kinematic and dynamic behaviors.

Keywords: Kinematic behavior, fatigue life, pseudo-rigid-body model, flexible slider crank mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5081
319 Kinematic Parameters for Asa River Routing

Authors: A. O. Ogunlela, B. Adelodun

Abstract:

Flood routing is used in estimating the travel time and attenuation of flood waves as they move downstream a river or channel. The routing procedure is usually classified as hydrologic or hydraulic. Hydraulic methods utilize the equations of continuity and motion. Kinematic routing, a hydraulic technique was used in routing Asa River at Ilorin. The river is of agricultural and industrial importance to Ilorin, the capital of Kwara State, Nigeria. This paper determines the kinematic parameters of kinematic wave velocity, time step, time required to traverse, weighting factor and change in length. Values obtained were 4.67 m/s, 19 secs, 21 secs, 0.75 and 100 m, respectively. These parameters adequately reflect the watershed and flow characteristics essential for the routing. The synthetic unit hydrograph was developed using the Natural Resources Conservation Service (NRCS) method. 24-hr 10yr, 25yr, 50yr and 100yr storm hydrographs were developed from the unit hydrograph using convolution procedures and the outflow hydrographs were obtained for each of 24-hr 10yr, 25yr, 50yr and 100yr indicating 0.11 m3/s, 0.10 m3/s, 0.10 m3/s and 0.10 m3/s attenuations respectively.

Keywords: Asa River, Kinematic parameters, Routing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
318 Acoustic Finite Element Analysis of a Slit Model with Consideration of Air Viscosity

Authors: M. Sasajima, M. Watanabe, T. Yamaguchi Y. Kurosawa, Y. Koike

Abstract:

In very narrow pathways, the speed of sound propagation and the phase of sound waves change due to the air viscosity. We have developed a new finite element method (FEM) that includes the effects of air viscosity for modeling a narrow sound pathway. This method is developed as an extension of the existing FEM for porous sound-absorbing materials. The numerical calculation results for several three-dimensional slit models using the proposed FEM are validated against existing calculation methods.

Keywords: Simulation, FEM, air viscosity, slit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
317 Kinematic Optimal Design on a New Robotic Platform for Stair Climbing

Authors: Byung Hoon Seo, Hyun Gyu Kim, Tae Won Seo

Abstract:

Stair climbing is one of critical issues for field robots to widen applicable areas. This paper presents optimal design on kinematic parameters of a new robotic platform for stair climbing. The robotic platform climbs various stairs by body flip locomotion with caterpillar type main platform. Kinematic parameters such as platform length, platform height, and caterpillar rotation speed are optimized to maximize stair climbing stability. Three types of stairs are used to simulate typical user conditions. The optimal design process is conducted based on Taguchi methodology, and resulting parameters with optimized objective function are presented. In near future, a prototype is assembled for real environment testing.

Keywords: Stair climbing robot, Optimal design, Taguchi methodology, Caterpillar, Kinematic parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
316 Quantum Ion Acoustic Solitary and Shock Waves in Dissipative Warm Plasma with Fermi Electron and Positron

Authors: Hamid Reza Pakzad

Abstract:

Ion-acoustic solitary and shock waves in dense quantum plasmas whose constituents are electrons, positrons, and positive ions are investigated. We assume that ion velocity is weakly relativistic and also the effects of kinematic viscosity among the plasma constituents is considered. By using the reductive perturbation method, the Korteweg–deVries–Burger (KdV-B) equation is derived.

Keywords: Ion acoustic shock waves; Quantum plasmas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
315 Development of a GPS Buoy for Ocean Surface Monitoring: Initial Results

Authors: Anuar Mohd Salleh, Mohd Effendi Daud

Abstract:

This study presents a kinematic positioning approach that uses a global positioning system (GPS) buoy for precise ocean surface monitoring. The GPS buoy data from the two experiments are processed using an accurate, medium-range differential kinematic technique. In each case, the data from a nearby coastal site are collected at a high rate (1 Hz) for more than 24 hours, and measurements are conducted in neighboring tidal stations to verify the estimated sea surface heights. The GPS buoy kinematic coordinates are estimated using epoch-wise pre-elimination and a backward substitution algorithm. Test results show that centimeterlevel accuracy can be successfully achieved in determining sea surface height using the proposed technique. The centimeter-level agreement between the two methods also suggests the possibility of using this inexpensive and more flexible GPS buoy equipment to enhance (or even replace) current tidal gauge stations.

Keywords: Global positioning system, kinematic GPS, sea surface height, GPS buoy, tide gauge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
314 Acoustic Analysis with Consideration of Damping Effects of Air Viscosity in Sound Pathway

Authors: M. Sasajima, M. Watanabe, T. Yamaguchi, Y. Kurosawa, Y. Koike

Abstract:

Sound pathways in the enclosures of small earphones are very narrow. In such narrow pathways, the speed of sound propagation and the phase of sound waves change because of the air viscosity. We have developed a new finite element method that includes the effects of damping due to air viscosity for modeling the sound pathway. This method is developed as an extension of the existing finite element method for porous sound-absorbing materials. The numerical calculation results using the proposed finite element method are validated against the existing calculation methods.

Keywords: Simulation, FEM, air viscosity, damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
313 Catalytic Aquathermolysis of Egyptian Heavy Crude Oil

Authors: S. Desouky, A. Al sabagh , M. Betiha, A. Badawi, A. Ghanem, S. Khalil

Abstract:

Two Amphiphilic catalysts, iron (III) dodecylbenzene sulfonate and nickel (II) dodecylbenzene sulfonate, were synthesized and used in the catalytic aquathermolysis of heavy crude oil to reduce its viscosity. The prepared catalysts exhibited good performance in the aquathermolysis and the viscosity is reduced by ~ 78.9 % for Egyptian heavy crude oil. The chemical and physical properties of heavy oil both before and after reaction were investigated by FT-IR, dynamic viscosity, molecular weight and SARA analysis. The results indicated that the content of resin, asphaltene, average molecular weight and sulfur content of heavy oil is reduced after the catalytic aquathermolysis.

Keywords: Amphiphilic catalyst, Aquathermolysis, Heavy oil, Viscosity reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4425
312 Kinematic Parameter-Independent Modeling and Measuring of Three-Axis Machine Tools

Authors: Yung-Yuan Hsu

Abstract:

The primary objective of this paper was to construct a “kinematic parameter-independent modeling of three-axis machine tools for geometric error measurement" technique. Improving the accuracy of the geometric error for three-axis machine tools is one of the machine tools- core techniques. This paper first applied the traditional method of HTM to deduce the geometric error model for three-axis machine tools. This geometric error model was related to the three-axis kinematic parameters where the overall errors was relative to the machine reference coordinate system. Given that the measurement of the linear axis in this model should be on the ideal motion axis, there were practical difficulties. Through a measurement method consolidating translational errors and rotational errors in the geometric error model, we simplified the three-axis geometric error model to a kinematic parameter-independent model. Finally, based on the new measurement method corresponding to this error model, we established a truly practical and more accurate error measuring technique for three-axis machine tools.

Keywords: Three-axis machine tool, Geometric error, HTM, Error measuring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
311 CFD Study of the Fluid Viscosity Variation and Effect on the Flow in a Stirred Tank

Authors: Achouri Ryma, Hatem Dhaouadi, Hatem Mhiri, Philippe Bournot

Abstract:

Stirred tanks are widely used in all industrial sectors. The need for further studies of the mixing operation and its different aspects comes from the diversity of agitation tools and implemented geometries in addition to the specific characteristics of each application. Viscous fluids are often encountered in industry and they represent the majority of treated cases, as in the polymer sector, food processing, pharmaceuticals and cosmetics. That's why in this paper, we will present a three-dimensional numerical study using the software Fluent, to study the effect of varying the fluid viscosity in a stirred tank with a Rushton turbine. This viscosity variation was performed by adding carboxymethylcellulose (CMC) to the fluid (water) in the vessel. In this work, we studied first the flow generated in the tank with a Rushton turbine. Second, we studied the effect of the fluid viscosity variation on the thermodynamic quantities defining the flow. For this, three viscosities (0.9% CMC, 1.1% CMC and 1.7% CMC) were considered.

Keywords: CFD, CMC, Mixing, Viscosity, Rushton turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3477
310 A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading

Authors: B. Navayineya, J. Vaseghi Amiri, M. Alijani Ardeshir

Abstract:

Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.

Keywords: Closed form solution, concrete dams reservoir, viscosity, dynamic loads, hydrodynamic pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
309 Comparative Study of Pasting Properties of High Fibre Plantain Based Flour Intended for Diabetic Food (Fufu)

Authors: C. C. Okafor, E. E. Ugwu

Abstract:

A comparative study on the feasibility of producing instant high fibre plantain flour for diabetic fufu by blending soy residence with different plantain (Musa spp) varieties (Horn, false Horn and French), all sieved at 60 mesh, mixed in ratio of 60:40 was analyzed for their passing properties using standard analytical method. Results show that VIIIS60 had the highest peak viscosity (303.75 RVU), Trough value (182.08 RVU), final viscosity (284.50 RVU), and lowest in breakdown viscosity (79.58 RVU), set back value (88.17 RVU), peak time (4.36min), pasting temperature (81.18°C) and differed significantly (p <0.05) from other samples. VIS60 had the lowest in peak viscosity (192.25 RVU), Trough value (112.67 RVU), final viscosity (211.92 RVU), but highest in breakdown viscosity (121.61 RVU), peak time (4.66min) pasting temperature (82.35°C), and differed significantly (p <0.05), from other samples. VIIS60 had the medium peak viscosity (236.67 RVU), Trough value (116.58 RVU), Break down viscosity (120:08 RVU), set back viscosity (167.92 RVU), peak time (4.39min), pasting temp (81.44°C) and differed significantly (p <0.05) from other samples. High final viscosity and low set back values of the French variety with soy residue blended at 60 mesh particle size recommends this french variety and fibre composition as optimum for production of instant plantain soy residue flour blend for production of diabetic fufu. 

Keywords: Plantain, soy residue pasting properties particle size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320
308 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries

Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness

Abstract:

The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. The combined effects of asymmetrical vehicle loading and uneven road surfaces has an effect on pavement dynamic loading. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.

Keywords: Eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45
307 Targeting the Pulmonary Delivery via Optimizing Physicochemical Characteristics of Instilled Liquid and Exploring Distribution of Produced Liquids by Bench-Top Models and Scintigraphy of Rabbits- Lungs

Authors: Mohammad Nasri, Hossein Mirshekarpour

Abstract:

We aimed to investigate how can target and optimize pulmonary delivery distribution by changing physicochemical characteristics of instilled liquid.Therefore, we created a new liquids group: a. eligible for desired distribution within lung because of assorted physicochemical characteristics b. capable of being augmented with a broad range of chemicals inertly c. no interference on respiratory function d. compatible with airway surface liquid We developed forty types of new liquid,were composed of Carboxymethylcellulose sodium,Glycerin and different types of Polysorbates.Viscosity was measured using a Programmable Rheometer and surface tension by KRUSS Tensiometer.We subsequently examined the liquids and delivery protocols by simple and branched glass capillary tube models of airways.Eventually,we explored pulmonary distribution of liquids being augmented with technetium-99m in mechanically ventilated rabbits.We used a single head large field of view gamma camera.Kinematic viscosity between 0.265Stokes and 0.289Stokes,density between 1g/cm3 and 1.5g/cm3 and surface tension between 25dyn/cm and 35dyn/cm were the most acceptable.

Keywords: Pulmonary delivery, Liquid instillation into airway, Physicochemical characteristics, Optimal distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485