Structural Characteristics of Batch Processed Agro-Waste Fibres
Authors: E. I. Akpan, S. O. Adeosun, G. I. Lawal, S. A. Balogun, X. D. Chen
Abstract:
The characterisation of agro-wastes fibres for composite applications from Nigeria using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) has been done. Fibres extracted from groundnut shell, coconut husk, rice husk, palm fruit bunch and palm fruit stalk are processed using two novel cellulose fibre production methods developed by the authors. Cellulose apparent crystallinity calculated using the deconvolution of the diffractometer trace shows that the amorphous portion of cellulose was permeable to hydrolysis yielding high crystallinity after treatment. All diffratograms show typical cellulose structure with well-defined 110, 200 and 040 peaks. Palm fruit fibres had the highest 200 crystalline cellulose peaks compared to others and it is an indication of rich cellulose content. Surface examination of the resulting fibres using SEM indicates the presence of regular cellulose network structure with some agglomerated laminated layer of thin leaves of cellulose microfibrils. The surfaces were relatively smooth indicating the removal of hemicellulose, lignin and pectin.
Keywords: X-ray diffraction, SEM, cellulose, deconvolution, crystallinity.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093520
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733References:
[1] P. Wambua, J.Ivens, I. Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics? Comput. Sci. Technol., 2003, 63, p 1259–1264.
[2] P. J. Herrera-Franco, A. Valadez-Gonzalez, Mechanical properties of continuous natural fibre-reinforced polymer composites, Compos. Part. A: Appl. Sci. 2004, 35, p 339–345.
[3] S. J. Eichhorn, R. J. Young, Composite micromechanics of hemp fibres and epoxy resin microdroplets.,Comput. Sci. Technol., 2004, 64, p 767– 772.
[4] Z. Liu, S. Z. Erhan, D. E. Akin, F. E. Barton, ‘‘Green’’ composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites, J. Agric. Food Chem., 2006, 54, p 2134–2137.
[5] A. Arbelaiz, B. Ferna´nez, J. A. Ramos, A. Retegi, R. Llano-Ponte, I. Mondragon, Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling, Comput. Sci. Technol., 2005, 65, p 1582–1592.
[6] D. Raya, B.K. Sarkara, A.K. Ranab, N. R. Bose, The mechanical properties of vinyl ester resin matrix composites reinforced with alkali treated jute fibres, Compos. Part. A: Appl. Sci., 2001, 32, p 119–127.
[7] L.Y. Mwaikambo, M.P. Ansell, Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization, J. Appl. Polym. Sci., 2002, 84, p 2222–2234.
[8] P.V. Joseph, K. Joseph, S. Thomas, C. K. S. Pillai, Prasad, V.S., Groeninck, G., Sarkissova, M. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites, Compos. Part. A: Appl. Sci., 2003, 34, p 253–266.
[9] K. L. Fung, X. S. Xing,R. K. Y. Li, S. C. Tjong, Y.W. Mai, An investigation on the processing of sisal reinforced polypropylene composites, Comput. Sci. Technol., 2003, 63, p 1255–1258.
[10] A. K. Mohanty, P. C. Tripathy, M. Misra, S. Parija, S. Sahho, Chemical modificiation of pineapple leaf fiber: graft copolymerization of acrylonitrile onto defatted pineapple leaf fibers, J. Appl. Polym. Sci. 2000, 77, p 3035–3043.
[11] P. Gan˜a´n, J. Cruz, S. Garbizu, A. Arbelaiz, I. Mondragon, Pseudostem and rachis banana fibers from cultivation wastes: effect of treatments on physico-chemical behavior, J. Appl. Polym. Sci., 2004, 94, p 1489–1495.
[12] L. A. Pothan, Z. Oomen, S. Thomas, Dynamic mechanical analysis of banana fiber reinforced polyester composites, Polymer, 2000, 41, p 1589–1596.
[13] R .C. Sun, J. Tomkinson, Y. X. Wang, B. Xiao, Physico-chemical and structural characterization of hemicellulose from wheat straw by alkaline peroxide extraction, Polymer, 2000, 41, p 2647 - 2656.
[14] P. R. Gan˜a´n, A. R. Zuluaga, I. M. JalelLabidi, Plantain fibre bundles isolated from Colombian agro-industrial residues, Bioresource Technology, 2008, 99, p486–491.
[15] U. Riedel and J. Nickel, Natural fibre-reinforced biopolymers as construction materials – new discoveries, J. Angew. Makromol. Chem., 1999, 272, 34–40.
[16] D. N. Saheb and J. P. Jog, Natural fiber polymer composites: a review, Adv. Polym. Technol., 1999, 18, p 351–363.
[17] A. N. Netravali and S. Chabba, Composites get greener, Materials Today, 2003, 6, p 22–29.
[18] A. Bismarck, S. Mishra and T. Lampke, Plant fibers as reinforcements for ‘green’ composites, in, p A. K. Mohanty, M. Mishra and L. T. Drzal (Eds), Natural Fibers, Biopolymers and Biocomposites, CRC Press, Boca Raton, FL, 2005.
[19] S. K. Batra, Long vegetable fibres. In: Lewin M, Pearce EM, editors. Handbook of fibre science and technology, Fibre chemistry, 4. New York: Marcel Dekker, 1985, p 727–807.
[20] P. R. Hornsby, E. Hinrichsen, K. Tarverdi, Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres. Part II. Analysis of composite microstructure and mechanical properties, J Mater Sci, 1997a, 32, p 1009–15.
[21] E. Hinrichsen, Preparation and characterization of natural fibre reinforced thermoplastics composites, MSc Thesis, Brunel University, 1994.
[22] P. R. Hornsby, E. Hinrichsen, K. Tarverdi, Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres Part I. Characterisation, J Mater Sci, 1997b, 32, p 443–9.
[23] J. M. Felix, P. Gatenholm, The nature of adhesion in composites of modified cellulose fibres and polypropylene, J ApplPolymSci, 1991, 42, p 609–20.
[24] R. Kohler, R. M. Wedler, Non-textile applications of flax fibres. In: TECHTEXTIL—Symposium 331, Vortrags-Nr, 1994, p 1–8.
[25] B. J. Brown, M. E. Hanson, D. M. Liverman, and R.W. Merideth Jr., Global sustainability: toward definition, Environmental Management, Springer, New York, 1987, 11, p 713–19.
[26] C. Sultana, The cultivation of flax fibres, Outlook Agric, 1983, 12, p 104–10.
[27] T. H. Folster, W. M. Aachen Flax—a renewable resource of reinforcing fibre for plastics? Kunststoffe German Plast, 1993, 83, p 16–19.
[28] R. M. Kessler, R. Kohler New strategies for exploiting hemp and flax, CHEMTECH, December. Washington, DC: American Chemical Society, 1996, p 34–42.
[29] K. M. Nebel New processing strategies for hemp, J Int Hemp Assoc, 1995, 3, p 1–11.
[30] J. A. Donaghy, J. H. Boomer, R. W. Haylock An assessment of the quality and yield of flax fibre produced by the use of pure bacterial cultures in flax rets, Enzyme microbial technology, 1992, 14, p 131–134.
[31] M. Kostic, B. Pejic, P. Skundric, Quality of chemically modified hemp fibres, Bioresource Technology, 2008, 99, p 94–99.
[32] S. O. Adeosun, G. I. Lawal, S. A. Balogun and E. I. Akpan, Review of Green Polymer Nanocomposites, Journal of Minerals & Materials Characterization & Engineering, 2012, 11, p 483-514.
[33] A. P. Dadi, S. Varanasi, C.A. Schall, Enhancement of cellulose saccharification kinetics using an ionic liquid pre-treatment step, Biotechnology and Bioengineering, 2006, 95, p 904–910.
[34] A. P. Dadi, C. A. Schall, S. Varanasi, Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pre-treatment, Applied Biochemistry and Biotechnology, 2007, 137, p 407–421.
[35] R. Kumar, G. Mago, V. Balan, C. E. Wyman, Physical and chemical characterizations of corn stover and poplar solids resulting from leading pre-treatment technologies, Bioresource Technology, 2009, 100, p 3948–3962.
[36] Y. H. P. Zhang, L. R. Lynd, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: non complexedcellulase systems, Biotechnology and Bioengineering, 2004, 88, p 797–824.
[37] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pre-treatment of lignocellulosic biomass, Bioresource Technology, 2005, 96, p 673–686.
[38] B. Paul, B. Filson, E. Dawson-Andoh, Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials, Bioresource Technology, 2009, 100, p 2259–2264.
[39] A. Bhatnagar, M. Sain, Processing of cellulose nanofiber reinforced composites, J. Reinf. Plast. Compos., 2005, 24, p 1259–1268.
[40] M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, H. M. Zeng, The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites, Compos. Sci. Technol., 2001, 61, p 1437– 1447.
[41] A. Alemdar, M. Sain Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls, Bioresource Technology, 2008, 99, p 1664–1671.
[42] K. Wang, J. Jiang, F. Xu, R. Sun, Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya), Bioresource Technology, 2009, 100, p 5288–5294.
[43] S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson. Cellulose Crystallinity Index: Measurement Techniques and their Impact on Interpreting Cellulase Performance, Biotechnology for Biofuels, 2010, 3, p 1-10.
[44] C. Li, B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer, K. P. Vogel, B. A. Simmons, S. Singh Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification, Bioresource Technology, 2010, 101, p 4900–4906.
[45] N. Reddy, Y. Yang, Natural cellulose fibers from soybean straw, Bioresource Technology, 2009, 100, p 3593–3598.
[46] D. Ciolacu, F. Ciolacu and V. I. Popa, Amorphous cellulose-Structure and Characterization, Cellulose Chem. Technol, 2011,45, p 13-21.
[47] M. Yoshioka, Y. Nishio, S. Nakamura, Y. Kushizaki, R. Ishiguro, T. Kabutomori, T. Imanishi and N. Shiraishi, Cellulose Nanofibers and Its Applications for Resin Reinforcements - Cellulose – Fundamental Aspects, Intech http://dx.doi.org/10.5772/55346, 2012, p. 343 – 366.