Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 330

Search results for: Solar drying

330 Effect of Chemical Pretreatments and Dehydration Methods on Quality Characteristics of Tomato Powder and Its Storage Stability

Authors: Reihaneh Ahmadzadeh Ghavidel, Mehdi Ghiafeh Davoodi

Abstract:

Dehydration process was carried out for tomato slices of var. Avinash after giving different pre-treatments such as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl). Untreated samples served as control. Solar drier and continuous conveyor (tunnel) drier were used for dehydration. Quality characteristics of tomato slices viz. moisture content, sugar, titratable acidity, lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning as affected by dehydration process were studied. Storage study was also carried out for a period of six months for tomato powder packed into different types of packaging materials viz. metalized polyester (MP) film and low density poly ethylene (LDPE). Changes in lycopene content and non-enzymatic browning (NEB) were estimated during storage at room temperature. Pretreatment of 5 mm thickness of tomato slices with calcium chloride in combination with potassium metabisulphite and drying using a tunnel drier with subsequent storage of product in metalized polyester bags was selected as the best process.

Keywords: Drying pretreatments, Solar drying, Tomato powder, Tunnel drying

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
329 Bioactive Compounds Content of Citrus Peel as Affected by Drying Processes

Authors: Azza A. Abou-Arab, Marwa H. Mahmoud, Ferial M. Abu-Salem

Abstract:

The present investigation studied the content of bioactive compounds as ascorbic acid, β-carotene, and flavonoids, and the effect of drying methods (microwave, solar, and air oven drying) on its level in citrus peel. These levels were decreased significantly (p <0.05) due to the dried methods. The percentage of ascorbic acid content loss of orange C. Valencia were 46.64, 52.95 and 68.83% with microwave, solar and air oven methods, respectively comparing to fresh samples. Also, the percentages of β- carotene loss of orange C. Valencia were 38.89, 52.42 and 87.14% with microwave, solar and air oven methods, respectively. Total flavonoid content recorded 453.33, 396.67 and 327.50 mg QE/100g dw, with dried by microwave, solar and oven methods, respectively compared with control in orange, C. valencia. These results revealed that microwave drying procedure was the most effective method which maintained citrus bioactive compounds content (ascorbic acid, β-carotene and flavonoid) followed by solar. On the other hand, air oven drying came in the last order due to direct heat treatment.

Keywords: Ascorbic acid, β-carotene, flavonoids, microwave, solar, air oven drying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
328 Modeling and Experimental Studies on Solar Crop Dryer Coupled with Reversed Absorber Type Solar Air Heater

Authors: Vijay R. Khawale, Shashank B. Thakare

Abstract:

The experiment was carried out to study the performance of solar crop dryer coupled with reversed absorber type solar air heater (SD2). Excel software is used to analyse the raw data obtained from the drying experiment to develop a model. An attempt is made in this paper to correlate the collector efficiency, dryer efficiency and pick-up efficiency. All these efficiencies are dependent on the parameters such as solar flux, ambient temperature, collector outlet temperature and moisture content. The simulation equation was developed to predict the values of collector efficiency. The parameters a, n and drying constant k were determined from a plot of curve using a drying models. Experimental data of drying red chili in conventional solar dryer and solar dryer coupled with reversed absorber solar air heater was compared by fitting with three drying models. The moisture content will be rapidly reduced in solar dryer with reversed absorber due to higher drying temperatures. The best fit model was selected to describe the drying behavior of red chili. For SD2 the values of the coefficient of determination (R2=0.997), mean bias error (MBE=0.00026) and root mean square error (RMSE=0.016) were used to determine the goodness or the quality of the fit. Pages model showed a better fit to drying red chili among Newton model and Henderson & Pabis model.

Keywords: Solar dryer, red chili, reversed absorber, reflector, Buckingham pi theorem, drying model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
327 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants

Authors: N. C. Shahi, Anupama Singh, A. E. Kate

Abstract:

There was a scenario present day that drying of fresh fruits and vegetables by indirect solar drying by using mechanical device; hence, an effort was made to develop a small scale solar tunnel dryer (STD). Drying of spinach is carried out to analyze the performance of the dryer and to study its drying characteristics. To evaluate the performance of dryer the independent variables were selected as air flow rate, loading density and shade net while collector efficiency, drying efficiency, overall efficiency and specific energy consumption were selected as responses during performing the experiments. The spinach was dried from initial moisture content 88.21-94.04% (w.b.) to final moisture content 3.50-5.13% (w.b.). The drying time considerably reduced as compared to open sun drying of spinach as sun drying took 15 h for drying. The average collector efficiency, drying efficiency and overall efficiency were in the range 28.73-61.15%, 11.63% to 22.13%, and 7.61-14.66%, respectively.

Keywords: Solar dryer, collector efficiency, drying efficiency, spinach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
326 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract

Authors: Kenia Martínez, Geniel Talavera, Juan Alonso

Abstract:

Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.

Keywords: Antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
325 Solar Tracking System Using a Refrigerant as Working Medium for Solar Energy Conversion

Authors: S. Sendhil Kumar, S. N. Vijayan

Abstract:

Utilization of solar energy can be found in various domestic and industrial applications. The performance of any solar collector is largely affected by various parameters such as glazing, absorber plate, top covers, and heating pipes. Technology improvements have brought us another method for conversion of solar energy to direct electricity using solar photovoltaic system. Utilization and extraction of solar energy is the biggest problem in these conversion methods. This paper aims to overcome these problems and take the advantages of available energy from solar by maximizing the utilization through solar tracking system using a refrigerant as a working medium. The use of this tracking system can help increase the efficiency of conversion devices by maximum utilization of solar energy. The dual axis tracking system gives maximum energy output compared to single axis tracking system.

Keywords: Refrigerant, solar collector, solar energy, solar panel, solar tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
324 Analysis of Drying Kinetics of a Slurry Droplet in the Falling Rate Period of Spray Drying

Authors: Boris Golman, Wittaya Julklang

Abstract:

The heat and mass transfer was investigated during the falling rate period of spray drying of a slurry droplet. The effect of the porosity of crust layer formed from primary particles during liquid evaporation was studied numerically using the developed mathematical model which takes into account the heat and mass transfer in the core and crust regions, the movement of the evaporation interface, and the external heat and mass transfer between the drying air and the droplet surface. It was confirmed that the heat transfer through the crust layer was more intense in the case of the dense droplet than the loose one due to the enhanced thermal conduction resulting in the higher average droplet temperature. The mass transfer was facilitated in the crust layer of loose droplet owing to the large pore space available for diffusion of water vapor from the evaporation interface to the outer droplet surface. The longer drying time is required for the droplet of high porosity to reach the final moisture content than that for the dense one due to the larger amount of water to be evaporated during the falling rate.

Keywords: Spray Drying, Slurry Droplet, Heat and Mass Transfer, Crust Layer Porosity, Mathematical Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
323 Metal-Dielectric Antireflection Coating on Metallic Substrate for Solar Selective Absorbers of Concentrating Solar Power Systems

Authors: Chien-Cheng Kuo

Abstract:

We design and discuss metal-dielectric antireflection coating on metallic substrates for Solar Selective Absorbers of Concentrating Solar Power Systems. The average reflectance is 8.5% at 400-3000nm and 84.4% at 3000nm-10000nm of the metal-dielectric structure.

Keywords: Concentrating solar power systems, solar thermal, solar selective absorber, absorptance, emittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
322 A Numerical Simulation of Solar Distillation for Installation in Chabahar-Iran

Authors: Masoud Afrand, Amin Behzadmehr, Arash Karimipour

Abstract:

The world demand for potable water is increasing every day with growing population. Desalination using solar energy is suitable for potable water production from brackish and seawater. In this paper, we present a theoretical study of solar distillation in a single basin under the open environmental conditions of Chabahar-Iran. The still has a base area of 2000mm×500mm with a glass cover inclined at 25° in order to obtain extra solar energy. We model the still and conduct its energy balance equations under minor assumptions. We computed the temperatures of glass cover, seawater interface, moist air and bottom using numerical method. The investigation addressed the following: The still productivity, distilled water salinity and still performance in terms of the still efficiency. Calculated still productivity in July was higher than December. So in this paper, we show that still productivity is directly functioning of solar radiation.

Keywords: Inclined Solar still, Solar energy, Solar desalination, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
321 Viability Analysis of the Use of Solar Energy for Water Heating in Brazil

Authors: E. T. L. Cöuras Ford, V. A. C.Vale, J. U. L Mendes

Abstract:

The sun is an inexhaustible source and harness its potential both for heating and power generation is one of the most promising and necessary alternatives, mainly due to environmental issues. However, it should be noted that this has always been present in the generation of energy on earth, only indirectly, since it is responsible for virtually all other energy sources, such as generating source of evaporation of the water cycle, allowing the impoundment and the consequent generation of electricity (hydroelectric power); winds are caused by atmospheric induction caused by large scale solar radiation; petroleum, coal and natural gas were generated from waste plants and animals that originally derived energy required for their development of solar radiation. This paper presents a study on the feasibility of using solar energy for water heating in homes. A simplified methodology developed for formulation of solar heating operation model of water in alternative systems of solar energy in Brazil, and compared it to that in the international market. Across this research, it was possible to create new paradigms for alternative applications to the use of solar energy.

Keywords: Solar energy, solar heating, solar project.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
320 CFD Analysis of Passive Cooling Building by Using Solar Chimney System

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings.

Keywords: Solar cooling system, solar chimney, active and passive solar technologies, natural ventilation, cavity depth, CFD models for solar chimney.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
319 Experimental Investigation of Drying Behavior of Rosehip in a Cyclone-Type Dryer

Authors: Ayse Bicer, Filiz Kar

Abstract:

This paper describes an experimental investigation of the drying behavior and conditions of rosehip in a convective cyclone-type dryer. Drying experiments were conducted at air inlet temperatures of 50, 60 and 70 o C and air velocities of 0.5, 1 and 1.5 ms–1. The parametric values obtained from the experiments were fitted to the Newton mathematical models. Consequently, the drying model developed by Newton model showed good agreement with the data obtained from the experiments. Concluding, it was obtained that; (i) the temperature is the major effect on the drying process, (ii) air velocity has low effect on the drying of rosehip, (iii) the C-vitamin is observed to change according to the temperature, moisture, drying time and flow types. The changing ratio is found to be in the range of 0.70-0.74.

Keywords: Rosehip, drying, food quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
318 Performance of Heat Pump Dryer for Kaffir Lime Leaves and Quality of Dried Products under Different Temperatures and Media

Authors: N. Poomsa-ad, K. Deejing, L. Wiset

Abstract:

This research is to study the performance of heat pump dryer for drying of kaffir lime leaves under different media and to compare the color values and essential oil content of final products after drying. In the experiments, kaffir lime leaves were dried in the closed-loop system at drying temperatures of 40, 50 and 60 oC. The drying media used in this study were hot air, CO2 and N2 gases. The velocity of drying media in the drying chamber was 0.4 m/s with bypass ratio of 30%. The initial moisture content of kaffir lime leaves was approximately 180-190 % d.b. It was dried until down to a final moisture content of 10% d.b. From the experiments, the results showed that drying rate, the coefficient of performance (COP) and specific energy consumption (SEC) depended on drying temperature. While drying media did not affect on drying rate. The time for kaffir lime leaves drying at 40, 50 and 60 oC was 10, 5 and 3 hours, respectively. The performance of the heat pump system decreased with drying temperature in the range of 2.20-3.51. In the aspect of final product color, the greenness and overall color had a great change under drying temperature at 60 oC rather than drying at 40 and 50 oC. When compared among drying media, the greenness and overall color of product dried with hot air at 60 oC had a great change rather than dried with CO2 and N2.

Keywords: airless drying, drying rate, essential oil content

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
317 Investigation of Drying Kinetics of Viscose Yarn Bobbins

Authors: Ugur Akyol, Dinçer Akal, Ahmet Cihan, Kamil Kahveci

Abstract:

This study is concerned with the investigation of the suitability of several empirical and semi-empirical drying models available in the literature to define drying behavior of viscose yarn bobbins. For this purpose, firstly, experimental drying behaviour of viscose bobbins was determined on an experimental dryer setup which was designed and manufactured based on hot-air bobbin dryers used in textile industry. Afterwards, drying models considered were fitted to the experimentally obtained moisture ratios. Drying parameters were drying temperature and bobbin diameter. The fit was performed by selecting the values for constants in the models in such a way that these values make the sum of the squared differences between the experimental and the model results for moisture ratio minimum. Suitability of fitting was specified as comparing the correlation coefficient, standard error and mean square deviation. The results show that the most appropriate model in describing the drying curves of viscose bobbins is the Page model.

Keywords: Drying, moisture ratio, Page model, viscose

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
316 Impact of Solar Energy Based Power Grid for Future Prospective of Pakistan

Authors: Muhammd Usman Sardar, Mazhar Hussain Baloch, Muhammad Shahbaz Ahmad, Zahir Javed Paracha

Abstract:

Shortfall of electrical energy in Pakistan is a challenge adversely affecting its industrial output and social growth. As elsewhere, Pakistan derives its electrical energy from a number of conventional sources. The exhaustion of petroleum and conventional resources, the rising costs coupled with extremely adverse climatic effects are taking its toll especially on the under-developed countries like Pakistan. As alternate, renewable energy sources like hydropower, solar, wind, even bio-energy and a mix of some or all of them could provide a credible alternative to the conventional energy resources that would not only be cleaner but sustainable as well. As a model, solar energy-based power grid for the near future has been attempted to offset the energy shortfalls as a mix with our existing sustainable natural energy resources. An assessment of solar energy potential for electricity generation is being presented for fulfilling the energy demands with higher level of reliability and sustainability. This model is based on the premise that solar energy potential of Pakistan is not only reliable but also sustainable. This research estimates the present & future approaching renewable energy resource specially the impact of solar energy based power grid for mitigating energy shortage in Pakistan.

Keywords: Powergrid network, solar photovoltaic (SPV) setups, solar power generation, solar energy technology (SET).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
315 Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still

Authors: Piyush Pal, Rahul Dev

Abstract:

Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015.

Keywords: Contaminated water, Conventional solar still, Modified solar still, Wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
314 An Experimental Study on Clothes Drying Using Waste Heat from Split Type Air Conditioner

Authors: P. Suntivarakorn, S. Satmarong, C. Benjapiyaporn, S. Theerakulpisut

Abstract:

This paper was to study the clothes dryer using waste heat from a split type air conditioner with a capacity of 12,648 btu/h. The drying chamber had a minimum cross section area with the size of 0.5 x 1.0 m2. The chamber was constructed by sailcloth and was inside folded with aluminium foil. Then, it was connected to the condensing unit of an air conditioner. The experiment was carried out in two aspects which were the clothes drying with and without auxiliary fan unit. The results showed that the drying rate of clothes in the chamber installed with and without auxiliary fan unit were 2.26 and 1.1 kg/h, respectively. In case of the chamber installed with a auxiliary fan unit, the additional power of 0.011 kWh was consumed and the drying rate was higher than that of clothes drying without auxiliary fan unit. Without auxiliary fan unit installation, no energy was required but there was a portion of hot air leaks away through the punctured holes at the wall of the drying chamber, hence the drying rate was dropped below. The drying rate of clothes drying using waste heat was higher than natural indoor drying and commercial dryer which their drying rate were 0.17 and 1.9 kg/h, respectively. It was noted that the COP of the air conditioner did not change during the operating of clothes drying.

Keywords: Drying Rate, Clothes Dryer, COP, Air Conditioner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
313 Effects of Different Drying Methods on the Properties of Viscose Single Jersey Fabrics

Authors: M. Kucukali Ozturk, Y. Beceren, B. Nergis

Abstract:

The study discussed in this paper was conducted in an attempt to investigate effects of different drying methods (line dry and tumble dry) on viscose single jersey fabrics knitted with ring yarn.

Keywords: Color change, dimensional properties, drying method, fabric tightness, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
312 The Use of Performance Indicators for Evaluating Models of Drying Jackfruit (Artocarpus heterophyllus L.): Page, Midilli, and Lewis

Authors: D. S. C. Soares, D. G. Costa, J. T. S., A. K. S. Abud, T. P. Nunes, A. M. Oliveira Júnior

Abstract:

Mathematical models of drying are used for the purpose of understanding the drying process in order to determine important parameters for design and operation of the dryer. The jackfruit is a fruit with high consumption in the Northeast and perishability. It is necessary to apply techniques to improve their conservation for longer in order to diffuse it by regions with low consumption. This study aimed to analyze several mathematical models (Page, Lewis, and Midilli) to indicate one that best fits the conditions of convective drying process using performance indicators associated with each model: accuracy (Af) and noise factors (Bf), mean square error (RMSE) and standard error of prediction (% SEP). Jackfruit drying was carried out in convective type tray dryer at a temperature of 50°C for 9 hours. It is observed that the model Midili was more accurate with Af: 1.39, Bf: 1.33, RMSE: 0.01%, and SEP: 5.34. However, the use of the Model Midilli is not appropriate for purposes of control process due to need four tuning parameters. With the performance indicators used in this paper, the Page model showed similar results with only two parameters. It is concluded that the best correlation between the experimental and estimated data is given by the Page’s model.

Keywords: Drying, models, jackfruit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
311 An Experimental Study on Evacuated Tube Solar Collector for Heating of Air in India

Authors: Avadhesh Yadav, V.K. Bajpai

Abstract:

A solar powered air heating system using one ended evacuated tubes is experimentally investigated. A solar air heater containing forty evacuated tubes is used for heating purpose. The collector surface area is about 4.44 m2. The length and outer diameters of the outer glass tube and absorber tube are 1500, 47 and 37 mm, respectively. In this experimental setup, we have a header (heat exchanger) of square shape (190 mm x 190 mm). The length of header is 1500 mm. The header consists of a hollow pipe in the center whose diameter is 60 mm through which the air is made to flow. The experimental setup contains approximately 108 liters of water. Water is working as heat collecting medium which collects the solar heat falling on the tubes. This heat is delivered to the air flowing through the header pipe. This heat flow is due to natural convection and conduction. The outlet air temperature depends upon several factors along with air flow rate and solar radiation intensity. The study has been done for both up-flow and down-flow of air in header in similar weather conditions, at different flow rates. In the present investigations the study has been made to find the effect of intensity of solar radiations and flow rate of air on the out let temperature of the air with time and which flow is more efficient. The obtained results show that the system is highly effective for the heating in this region. Moreover, it has been observed that system is highly efficient for the particular flow rate of air. It was also observed that downflow configuration is more effective than up-flow condition at all flow rates due to lesser losses in down-flow. The results show that temperature differences of upper head and lower head, both of water and surface of pipes on the respective ends is lower in down-flow.

Keywords: air flow direction, Evacuated tube solar collector, solar air heating, solar thermal utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
310 X-Ray Energy Release in the Solar Eruptive Flare from 6th of September 2012

Authors: Mirabbos Mirkamalov, Zavkiddin Mirtoshev

Abstract:

The M 1.6 class flare occurred on 6th of September 2012. Our observations correspond to the active region NOAA 11560 with the heliographic coordinates N04W71. The event took place between 04:00 UT and 04:45 UT, and was close to the solar limb at the western region. The flare temperature correlates with flux peak, increases for a short period (between 04:08 UT and 04:12 UT), rises impulsively, attains a maximum value of about 17 MK at 04:12 UT and gradually decreases after peak value. Around the peak we observe significant emissions of X-ray sources. Flux profiles of the X-ray emission exhibit a progressively faster raise and decline as the higher energy channels are considered.

Keywords: Magnetic reconnection, solar atmosphere, solar flare, X-ray emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
309 Persian Pistachio Nut (Pistacia vera L.) Dehydration in Natural and Industrial Conditions

Authors: Hamid Tavakolipour, Mohsen Mokhtarian, Ahmad Kalbasi Ashtari

Abstract:

In this study, the effect of various drying methods (sun drying, shade drying and industrial drying) on final moisture content, shell splitting degree, shrinkage and color change were studied. Sun drying resulted higher degree of pistachio nuts shell splitting on pistachio nuts relative other drying methods. The ANOVA results showed that the different drying methods did not significantly effects on color change of dried pistachio nut. The results illustrated that pistachio nut dried by industrial drying had the lowest moisture content. After the end of drying process, initially, the experimental drying data were fitted with five famous drying models namely Newton, Page, Silva et al., Peleg and Henderson and Pabis. The results indicated that Peleg and Page models gave better results compared with other models to monitor the moisture ratio’s pistachio nut in industrial drying and open sun (or shade drying) methods, respectively.

Keywords: Industrial drying, Modeling, Pistachio, quality properties, Traditional drying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
308 A Performance Analysis Study of an Active Solar Still Integrating Fin at the Basin Plate

Authors: O. Ansari, H. Hafs, A. Bah, M. Asbik, M. Malha, M. Bakhouya

Abstract:

Water is one of the most important and vulnerable natural resources due to human activities and climate change. Water-level continues declining year after year and it is primarily caused by sustained, extensive, and traditional usage methods. Improving water utilization becomes an urgent issue in order satisfy the increasing population needs. Desalination of seawater or brackish water could help in increasing water potential. However, a cost-effective desalination process is required. The most appropriate method for performing this desalination is solar-driven distillation, given its simplicity, low cost and especially the availability of the solar energy source. The main objective of this paper is to demonstrate the influence of coupling integrated basin plate by fins with preheating by solar collector on the performance of solar still. The energy balance equations for the various elements of the solar still are introduced. A numerical example is used to show the efficiency of the proposed solution.

Keywords: Active solar still, Brackisch water, desalination, fins, solar collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
307 A Software for Calculation of Optimum Conditions for Cotton Bobbin Drying in a Hot-Air Bobbin Dryer

Authors: Hilmi Kuscu, Ahmet Cihan, Kamil Kahveci, Ugur Akyol

Abstract:

In this study, a software has been developed to predict the optimum conditions for drying of cotton based yarn bobbins in a hot air dryer. For this purpose, firstly, a suitable drying model has been specified using experimental drying behavior for different values of drying parameters. Drying parameters in the experiments were drying temperature, drying pressure, and volumetric flow rate of drying air. After obtaining a suitable drying model, additional curve fittings have been performed to obtain equations for drying time and energy consumption taking into account the effects of drying parameters. Then, a software has been developed using Visual Basic programming language to predict the optimum drying conditions for drying time and energy consumption.

Keywords: Drying, bobbin, cotton, PLC control, Visual Basic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
306 Porous Particles Drying in a Vertical Upward Pneumatic Conveying Dryer

Authors: Samy M. El-Behery, W. A. El-Askary, K. A. Ibrahim, Mofreh H. Hamed

Abstract:

A steady two-phase flow model has been developed to simulate the drying process of porous particle in a pneumatic conveying dryer. The model takes into account the momentum, heat and mass transfer between the continuous phase and the dispersed phase. A single particle model was employed to calculate the evaporation rate. In this model the pore structure is simplified to allow the dominant evaporation mechanism to be readily identified at all points within the duct. The predominant mechanism at any time depends upon the pressure, temperature and the diameter of pore from which evaporating is occurring. The model was validated against experimental studies of pneumatic transport at low and high speeds as well as pneumatic drying. The effects of operating conditions on the dryer parameters are studied numerically. The present results show that the drying rate is enhanced as the inlet gas temperature and the gas flow rate increase and as the solid mass flow rate deceases. The present results also demonstrate the necessity of measuring the inlet gas velocity or the solid concentration in any experimental analysis.

Keywords: Two-phase, gas-solid, pneumatic drying, pneumatic conveying, heat and mass transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
305 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram

Authors: Chonmapat Torasa

Abstract:

This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-watt fluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.

Keywords: Solar Cell, Solar-cell power generating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
304 Simulation of the Temperature and Heat Gain by Solar Parabolic Trough Collector in Algeria

Authors: M. Ouagued, A. Khellaf

Abstract:

The objectif of the present work is to determinate the potential of the solar parabolic trough collector (PTC) for use in the design of a solar thermal power plant in Algeria. The study is based on a mathematical modeling of the PTC. Heat balance has been established respectively on the heat transfer fluid (HTF), the absorber tube and the glass envelop using the principle of energy conservation at each surface of the HCE cross-sectionn. The modified Euler method is used to solve the obtained differential equations. At first the results for typical days of two seasons the thermal behavior of the HTF, the absorber and the envelope are obtained. Then to determine the thermal performances of the heat transfer fluid, different oils are considered and their temperature and heat gain evolutions compared.

Keywords: Direct solar irradiance, solar radiation in Algeria, solar parabolic trough collector, heat balance, thermal oil performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
303 Modeling Drying and Pyrolysis of Moist Wood Particles at Slow Heating Rates

Authors: Avdhesh K. Sharma

Abstract:

Formulation for drying and pyrolysis process in packed beds at slow heating rates is presented. Drying of biomass particles bed is described by mass diffusion equation and local moisture-vapour-equilibrium relations. In gasifiers, volatilization rate during pyrolysis of biomass is modeled by using apparent kinetic rate expression, while product compositions at slow heating rates is modeled using empirical fitted mass ratios (i.e., CO/CO2, ME/CO2, H2O/CO2) in terms of pyrolysis temperature. The drying module is validated fairly with available chemical kinetics scheme and found that the testing zone in gasifier bed constituted of relatively smaller particles having high airflow with high isothermal temperature expedite the drying process. Further, volatile releases more quickly within the shorter zone height at high temperatures (isothermal). Both, moisture loss and volatile release profiles are found to be sensitive to temperature, although the influence of initial moisture content on volatile release profile is not so sensitive.

Keywords: Modeling downdraft gasifier, drying, pyrolysis, moist woody biomass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
302 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices

Authors: M. O. Oke, T. S. Workneh

Abstract:

Drying behavior of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80°C) and ten sweet potato varieties sliced to 5mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27 - 6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.

Keywords: Sweet Potato Slice, Drying Models, Moisture Ratio, Moisture Diffusivity, Activation Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
301 Effect of Humidity on in-Process Crystallization of Lactose during Spray Drying

Authors: Amirali Ebrahimi, T. A. G. Langrish

Abstract:

The effect of various humidities on process yields and degrees of crystallinity for spray-dried powders from spray drying of lactose with humid air in a straight-through system have been studied. It has been suggested by Williams–Landel–Ferry kinetics (WLF) that a higher particle temperature and lower glass-transition temperature would increase the crystallization rate of the particles during the spray-drying process. Freshly humidified air produced by a Buchi-B290 spray dryer as a humidifier attached to the main spray dryer decreased the particle glass-transition temperature (Tg), while allowing the particle temperature (Tp) to reach higher values by using an insulated drying chamber. Differential scanning calorimetry (DSC) and moisture sorption analysis were used to measure the degree of crystallinity for the spray-dried lactose powders. The results showed that higher Tp-Tg, as a result of applying humid air, improved the process yield from 21 ± 4 to 26 ± 2% and crystallinity of the particles by decreasing the latent heat of crystallization from 43 ± 1 to 30 ± 11 J/g and the sorption peak height from 7.3 ± 0.7% to 6 ± 0.7%.

Keywords: Lactose, crystallization, spray drying, humid air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF