
 
Abstract—The rapid growth of telehealth Internet of Things (IoT) 

devices has raised concerns about energy consumption and efficient 
data processing. This paper presents an energy-efficient model that 
integrates telehealth IoT devices with a fog and cloud computing-
based platform, offering a sustainable and robust solution to overcome 
these challenges. Our model employs fog computing as a localized data 
processing layer while leveraging cloud computing for resource-
intensive tasks, significantly reducing energy consumption. We 
incorporate adaptive energy-saving strategies. Simulation analysis 
validates our approach's effectiveness in enhancing energy efficiency 
for telehealth IoT systems integrated with localized fog nodes and both 
private and public cloud infrastructures. Future research will focus on 
further optimization of the energy-saving model, exploring additional 
functional enhancements, and assessing its broader applicability in 
other healthcare and industry sectors. 
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I. INTRODUCTION 

EALTHCARE is a critical global industry, and the advent 
of the IoT and cloud computing has significantly 

transformed healthcare system management. The ever-
increasing data volume generated by these systems demands 
efficient, energy-saving computing platforms. Telehealth IoT 
devices often need to communicate with a variety of other 
devices and platforms [[1]]. Despite the benefits, the large-scale 
deployment of telehealth IoT devices presents several 
challenges, including [2]: a) Energy Consumption: Telehealth 
IoT devices require a continuous power supply to operate and 
communicate with other devices and servers; b) Data 
Management: The vast amount of data generated by telehealth 
IoT devices demands efficient data management solutions; c) 
Latency: Real-time healthcare services require low-latency 
communication between IoT devices and servers. However, as 
the number of devices increases, network congestion, and 
longer transmission distances can result in higher latency, 
affecting the quality of healthcare services; d) Security and 
Privacy: The large-scale implementation of such devices 
exposes them to potential cyber-attacks and data breaches, 
requiring robust security measures and encryption techniques.  

Our energy-efficient model integrates fog and cloud 
computing paradigms to optimize data processing for telehealth 
IoT devices without compromising real-time healthcare 
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services. The model enables localized data processing by 
incorporating fog computing as an intermediary layer between 
IoT devices and public or private cloud servers, effectively 
reducing latency and data transfer overhead. Simultaneously, 
public and private cloud computing provides a robust 
infrastructure for handling large data volumes and performing 
resource-intensive computations. The primary goal of this 
model is to minimize energy consumption through intelligent 
task allocation between fog nodes and cloud servers, by 
considering their computational capacity and proximity to IoT 
devices. This task allocation process also considers various 
sensitivity and priority levels within the healthcare context, 
ensuring prompt responses to critical and high-sensitivity 
requests. Moreover, a simulation method is employed to 
evaluate the effectiveness and efficiency of the system, as 
examining complex IoT-Fog-Cloud systems within a 
simulation environment is a prevalent approach among 
researchers. 

 II. RELATED WORK  

In recent years, several simulation methods have been 
developed to study the integration of fog nodes in IoT devices 
and cloud computing. Gupta et al. [3] introduced iFogSim, a 
toolkit for modeling and simulating resource management 
techniques in IoT, edge, and fog computing environments. 
Oueis et al. [4] presented a simulation study on load distribution 
in small-cell cloud computing using fog computing and 
proposed a fog balancing technique to optimize resource 
allocation and reduce latency. Barcelo et al. [5] explored IoT-
cloud service optimization through simulation in smart 
environments, presenting a novel optimization framework that 
utilizes fog nodes to reduce latency and energy consumption. 
Zeng et al. [6] conducted a comparative study of IoT cloud and 
fog computing simulations using iFogSim and Cooja, 
discussing the advantages and limitations of both simulators 
and providing insights into selecting an appropriate tool for 
specific scenarios. Lastly, Byers and Wetterwald [7] discussed 
the concept of fog computing and its importance in distributing 
data and intelligence for IoT resiliency and scalability, 
presenting various simulation models and techniques used to 
evaluate the performance of fog computing in IoT 
environments.  
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Several studies have focused on the YAFS (Yet Another Fog 
Simulator) framework, a simulator designed for modeling and 
simulating fog computing environments in IoT scenarios. 
Bermejo et al. [8] introduced YAFS, presenting the 
architecture, components, and use cases of the simulator, 
demonstrating its effectiveness in modeling and simulating fog 
computing deployments. García et al. [9] showcased YAFS's 
ability to model and simulate fog computing scenarios and 
analyze the performance of different scheduling algorithms. 

III. MODEL OVERVIEW 

The model comprises three main components: IoT devices, 

fog nodes, and public/private cloud servers, interconnected 
through a communication network. 
1. IoT Devices: Telehealth IoT devices, such as wearables, 

sensors, and remote monitoring systems, collect and 
transmit patient data in real-time. 

2. Fog Nodes: Fog nodes, located near IoT devices, serve as 
intermediate processing units. 

3. Cloud Servers: Cloud servers provide a robust 
infrastructure for large-scale data storage, processing, and 
advanced analytics. 

4. Communication Network: A communication network 
connects IoT devices, fog nodes, and cloud servers, 
enabling seamless data transmission and task allocation.

 

 

Fig. 1 Telehealth IoT devices integrated with Fog nodes and private/public cloud architecture model 
 

To process the data requests, the fog nodes are equipped with 
data analytics functions that enable them to intelligently assign 
different types of requests to either fog nodes, private cloud, or 
public cloud. This intelligent decision-making process is more 
effective and efficient than the traditional "first-come, first-
served" approach.  

Here is a brief overview of the components in the network 
topology: IoT devices represent individual IoT devices in the 
network, each associated with a specific fog node. Gateways are 
used to connect IoT devices to fog nodes. Fog nodes are 
intermediate computing resources that process and store data 
from IoT devices. A router connects the fog nodes to the private 
cloud and public cloud. Private Cloud and Public Cloud are the 
two cloud resources in the network. 

The data collected from IoT devices have two parameters: a) 
sensitivity and b) priority. Sensitivity refers to the level of 
importance or criticality associated with the data generated by 
telehealth IoT devices. In the healthcare domain, different types 
of patient data have varying levels of sensitivity. For instance, 
vital signs like heart rate, blood pressure, or oxygen levels 
might be considered highly sensitive data, as they directly 

impact patient health and require immediate attention. The 
sensitivity level helps determine how urgently and through 
which route (fog node or cloud server) the data should be 
processed and analyzed to ensure timely and appropriate 
responses. Priority refers to the level of urgency or importance 
assigned to a particular data request or task generated by 
telehealth IoT devices. In a healthcare context, different data 
requests may have varying priority levels based on their 
potential impact on patient care. For example, a critical medical 
alert indicating a life-threatening condition may have the 
highest priority, requiring immediate attention and processing. 
The combination of sensitivity and priority is used to determine 
the appropriate processing location for the data generated by the 
IoT devices. The decision-making process considers the 
sensitivity and priority levels of the data along with other 
factors, such as energy consumption and latency, to 
intelligently allocate tasks to fog nodes or cloud servers. This 
approach ensures that critical data are processed promptly and 
efficiently, while less critical data are processed in a manner 
that optimizes energy consumption and resource utilization. 
The categorization of high and low sensitivity and high and low 
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priority data sent from telehealth IoT monitor devices can 
depend on various factors, including the specific use case, 
regulatory requirements, and patient needs. One possible 
approach could be to use threshold values based on vital signs 
such as pulse and heartbeat to categorize the data. 

IV. SIMULATION STUDY  

The simulation process can be analyzed in the following 
steps: 
1. Initialization: Create IoT devices D = {d1, d2, ..., dn}, fog 

nodes F = {f1, f2, ..., fm}; and cloud instances C = {c1, c2} 
with their respective properties. 

2. Connection: Connect IoT devices to fog nodes and then fog 
nodes determine which data are transferred to cloud 
instances (private and public). Each device is connected to 
a corresponding fog node. 

3. Data transmission simulation: Simulate data transmission 
from IoT devices to their respective fog nodes, and then fog 
nodes assign the requests to private cloud or public cloud 
based on their priority and sensitivity. If the sensitivity of 
the device is 'high', data are sent to the private cloud. If the 
sensitivity is 'low' and the priority is 'high', there is a chance 
that data are sent to the fog node. If this condition is not 
met, the device does not send data. If the sensitivity is 'low' 
and the priority is 'low', data are sent to the public cloud. 

4. Energy consumption calculation at time t: Calculate the 
energy consumed by each IoT device during data 
transmission considering the latency. Different energy 
costs are associated with sending data to different 
destinations (fog nodes, private cloud, or public cloud). 

 Calculate the average processing time P_ti and energy 
consumption E_ti for each IoT device i in D and fog node j 
in F. 

 Calculate average energy consumption E_ti, sensitivity S_ti, 
and priority P_rti for each IoT device i in D and fog node j 
in F. 

 Calculate the latency L_dti for transmitting data from device 
d to each fog node i in F and cloud server j in C.  

 Calculate the priority Pr_dti, sensitivity S_dti, energy 
consumption E_dti for device d and each fog node i in F and 
cloud server j in C.  

 Find the fog node j* and cloud server l* with the minimum 
latency for device i*, considering Prti, S_ti, and E_dti: j* = 
argmin_j(Ldt) for j in F, such that L_dti <= Lt, Pr_dti <= Prt 
and S_dti <= St. l* = argmin_l(Ldt) for l in C, such that L_dti 
<= Lt, Pr_dti <= Prt and S_dti <= St 

 If Sdt[j*] <=St, then allocate task could server l* and add it 
to the queue: QC[l*]. append ((d, t)) 

 Else if Pr_dt[j*] <= P_rti, then allocate task t to fog node j* 
and add it to the queue: QF[j*]. append ((d, t)) 

 Else if Pr_dt[l*] <= P_rti, then allocate task t to cloud server 
l* and add it to the queue: QC[l*]. append ((d, t)) 

 Else, consider alternative energy-saving strategies or adjust 
the energy consumption threshold Et. 

Explanation of subscripts and ranges: 
 i: individual IoT devices in the network. 
 j: fog nodes in the network. 

 l: cloud servers in the network. 
 d: individual data transmission instances from IoT devices. 
 D: Range of IoT devices (1 to n). 
 F: Range of fog nodes (1 to m). 
 C: Range of cloud servers (1 to 2, representing private and 

public cloud). 
 QF[j]: Task allocation queue for fog node j. 
 QC[l]: Task allocation queue for cloud server l. 
5. Comparison: Compare the energy consumption of IoT 

devices when using fog nodes and when not using fog 
nodes.  

V. RESULTS AND ANALYSIS 

Algorithm: Energy Consumption Calculation for Telehealth IoT 
Devices 
Inputs: 
 - List of IoT devices: D = {d1, d2, ..., dn} 
 - List of fog nodes: F = {f1, f2, ..., fm} 
 - List of cloud servers: C = {c1, c2} 
  - Latency threshold: Lt (max allowable latency) 
  - Priority threshold: Prt (minimum priority level) 
  - Sensitivity threshold: St (maximum sensitivity level) 
  - Energy consumption threshold: Et (maximum energy consumption) 
Outputs: 
 - Task allocation queues: QF[f] and QC[c] for fog nodes 
     and cloud servers 
 - Energy consumption E_ti for each IoT device  i 
Initialization: 

- For each IoT device i in D and fog node j in F: 
  Set E_ti = 0, initialize energy consumption for each      
   device. 
- For each IoT device d in D: 

Calculate sensitivity S_dt and priority Pr_dt for device d. 
- For each IoT device i in D: 

Calculate latency L_dti for transmitting data from  device d to each 
fog node j and cloud server l. 

- For each IoT device d in D: 
Find fog node j* and cloud server l* with the minimum latency, 
considering Pr_dt and S_dt: 
j* = argmin_j(L_dti) for j in F, such that L_dti <= Lt, Pr_dt  <= Prt, 

and S_dt <= St 

l* = argmin_l(L_dti) for l in C, such that L_dti <= Lt,  
  Pr_dt <= Prt, and S_dt <= St 
If S_dt[j*] <= St, then allocate task to cloud server l* and add it to 
queue QC[l*] 

Else if Pr_dt[j*] <= Prt, then allocate task to fog node j* and add 
it to queue QF[j*] 
   Else if Pr_dt[l*] <= Prt, then allocate task to cloud server l* and 

add it to queue QC[l*] 
Else  

      consider alternative energy-saving strategies or  
      adjust the energy consumption threshold Et 
- For each fog node j in F: 

    Process tasks in queue QF[j]: 
  - Update E_ti for each IoT device i in the queue based on processing 
time and energy cost. 
- For each cloud server l in C: 
    Process tasks in queue QC[l]: 

Update E_ti for each IoT device i in the queue based  
on processing time and energy cost. 
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Based on the simulation results, we can analyze the impact 
of different parameters on the energy efficiency and 
performance of the proposed telehealth model with and without 
fog computing. The parameters in the results are Snapshot 
Interval, Number of Devices, With Fog Mean, With Fog 
Standard Deviation (Std), With Fog Confidential Interval (CI), 
Without Fog Mean, and Without Fog Std, Without Fog 
Confidential Interval (CI). 
 Snapshot Interval: This parameter represents the frequency 

at which the IoT devices send their data to the fog nodes or 
cloud servers. As the snapshot interval increases, the 
frequency of data transmission decreases. With a snapshot 
interval of 1, the IoT devices are sending data continuously. 
As the number of devices increases, the energy 
consumption of both With Fog and Without Fog scenarios 
increases slightly, but the with-fog mean remains 
consistently higher than the without-fog mean. With a 
snapshot interval of 5, the IoT devices are sending data less 
frequently, which results in reduced energy consumption. 
In this case, the energy consumption of the With Fog 
scenario is consistently lower than the Without Fog 
scenario, which demonstrates the energy efficiency 
advantages of using fog computing. With a snapshot 
interval of 10, the IoT devices send data even less 
frequently, and the difference in energy consumption 
between the With Fog and Without Fog scenarios becomes 
more pronounced. This result further emphasizes the 
benefits of using fog computing in terms of energy 
efficiency. 

 Number of Devices: This parameter refers to the number of 
telehealth IoT devices in the network. As the number of 
devices increases, the energy consumption for both With 
Fog and Without Fog scenarios tends to increase as well. 
This is expected, as more devices lead to higher data 
transmission and processing loads. However, the increase 
in energy consumption is consistently smaller in the With 
Fog scenario compared to the Without Fog scenario across 
all snapshot intervals. This shows that the proposed fog-
based model is more scalable and can better handle the 
energy requirements of a growing number of devices. 

 With Fog Mean and Without Fog Mean: These parameters 
represent the average energy consumption in the scenarios 
with and without fog computing, respectively. Across all 
snapshot intervals and number of devices, the With Fog 
Mean is generally lower than the Without Fog Mean, 
indicating that the fog-based model is more energy-
efficient than the cloud-only model. 

 With Fog Std and Without Fog Std: These parameters 
represent the standard deviation of the energy consumption 
in the scenarios with and without fog computing, 
respectively. In general, the standard deviation values are 
lower in the With Fog scenario compared to the Without 
Fog scenario. This suggests that the energy consumption is 
more consistent and less variable in the fog-based model, 
which could lead to more predictable and stable system 
performance. 

 With Fog Std and Without Fog CI: The confidence interval 

(CI) in the simulation code is a range within which a certain 
percentage of the population parameter is expected to lie, 
with a specified level of confidence. In the context of the 
provided simulation results, the CIs represent the range 
within which the true mean performance of the system 
(either with or without fog computing) is likely to fall, with 
a certain level of confidence, typically 95%. A narrower CI 
indicates a more precise estimate, while a wider interval 
suggests more uncertainty. 

In all cases, the "With Fog Mean" is higher than the "Without 
Fog Mean," indicating that, on average, the remaining energy is 
higher when using fog computing. Looking at the CIs for both 
"With Fog" and "Without Fog" scenarios, if the CIs do not 
overlap, it suggests that the difference in energy remaining 
between the two scenarios is statistically significant. For 
example, in Fig. 2 (Snapshot Interval: 1, Number of Devices: 
10), the "With Fog CI" is (87.98, 89.45), and the "Without Fog 
CI" is (84.90, 87.47). Since these intervals do not overlap, 
there's strong evidence that using fog computing leads to 
significantly higher energy remaining for this specific 
combination of parameters. Comparing the width of the CIs for 
each scenario: A narrower CI indicates a more precise estimate 
of the true population means. For most CI values, the "With Fog 
CI" is narrower than the "Without Fog CI" suggesting that the 
"With Fog" scenario has a more precise estimate. Analyzing the 
trends as the number of devices increases within each snapshot 
interval: In general, the energy remaining in both scenarios 
decreases as the number of devices increases. However, the rate 
of decrease seems to be lower when using fog computing. 
Observing the trends as the snapshot interval increases for each 
group of devices:  As the snapshot interval increases, the energy 
remaining for both scenarios decrease, suggesting that less 
frequent snapshots may lead to less energy conservation. 
However, the "With Fog" scenario consistently results in higher 
energy remaining compared to the "Without Fog" scenario, 
regardless of the snapshot interval. 

 

 

Fig. 2 Energy Remaining of IoT Devices with Standard Deviation 
 

 

Fig. 3 Energy Remaining of IoT Devices with Confidential Interval 
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VI. CONCLUSION 

This paper provides a compelling model for the use of fog 
and cloud computing-based platforms in telehealth IoT 
deployments to reduce energy consumption, improve data 
processing efficiency, and maintain high-quality healthcare 
services. The model leverages the strengths of both fog and 
cloud computing paradigms to address the challenges 
associated with large-scale telehealth IoT deployments. The 
simulation results show that the proposed fog-based model 
significantly reduces energy consumption compared to the 
cloud-only model while maintaining high-quality data 
processing and transmission. Moreover, the methodology 
described in this paper provides a comprehensive approach to 
analyzing network performance and energy consumption, 
which includes examining the impact of various parameters, 
such as the number of devices, fog node deployment, task 
allocation algorithm, energy consumption metrics, and 
performance metrics. The simulation results and methodology 
demonstrate the effectiveness of the proposed model and 
provide a roadmap for future research in this area. The proposed 
model can help healthcare providers and stakeholders improve 
patient care and outcomes while reducing costs and energy 
consumption. 
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