Work Function Engineering of Functionally Graded ZnO+Ga2O3 Thin Film for Solar Cell and Organic Light Emitting Diodes Applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Work Function Engineering of Functionally Graded ZnO+Ga2O3 Thin Film for Solar Cell and Organic Light Emitting Diodes Applications

Authors: Yong-Taeg Oh, Won Song, Seok-Eui Choi, Bo-Ra Koo, Dong-Chan Shin

Abstract:

ZnO+Ga2O3 functionally graded thin films (FGTFs) were examined for their potential use as Solar cell and organic light emitting diodes (OLEDs). FGTF transparent conducting oxides (TCO) were fabricated by combinatorial RF magnetron sputtering. The composition gradient was controlled up to 10% by changing the plasma power of the two sputter guns. A Ga2O3+ZnO graded region was placed on the top layer of ZnO. The FGTFs showed up to 80% transmittance. Their surface resistances were reduced to < 10% by increasing the Ga2O3: pure ZnO ratio in the TCO. The FGTFs- work functions could be controlled within a range of 0.18 eV. The controlled work function is a very promising technology because it reduces the contact resistance between the anode and Hall transport layers of OLED and solar cell devices.

Keywords: Work Function, TCO, Functionally Graded Thin Films, Resistance, Transmittance.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1054819

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373

References:


[1] S. Prada, U. Martinez, G. Pacchioni, Physical Review, B 78, (2008) 235423.
[2] T. Minami, Semicond. Sci. Technol., 20 (2005) 35.
[3] S. I. Jun, T. E. McKnight, M. L. Simson, P. D. Rack, Thin Solid Films 476, (2005) 59.
[4] B. D. Ahn, J. H Kim, H. S. Kang, C. H Lee, S. H. Oh, K. W. Kim, G. E. Jang, S. Y. Lee, Thin Solid Films 516, (2008) 1382.
[5] K. Tominaga, D. Takada, K. Sinmomura, H. Suketa, K. Takita, K. Murai, T. Moriga, Vacuum, (2008) 1.
[6] R. Al Asmar, S. Juillaguet, M. Ramonda, A. Giani, P. Combette, A.khoury, A. Foucaran, J. Cryst. Growth 275, (2005) 512.
[7] M. Miyazaki, K. Sato, A. Mitsui, H. Nishimura J. Non-Crystalline Solids 218, (2008) 323.
[8] H. H. Huang, S. Y. Chu, P. C. Kao, Y. C. Chen, Thin Solid Films 516, (2008) 5644.
[9] G. S. Heo, S. J Hong, J. W. Park, I. H. Lee, B. H. Choi, J. H. Lee, D. C. Shin, J. Nanosci. Nanotechnol. 7, (2007) 4021.
[10] S. J. Hong, G. S. Heo, J. W. Park, I.H. Lee, B. H. Choi, J. H. Lee, D. C. Shin, J. Nanosci. Nanotechnol. 7, (2007) 4077.
[11] G. S. Heo, S. J Hong, J. W. Park, B. H. Choi, J. H. Lee, D. C. Shin, J. Nanosci. Nanotechnol. 8, (2008) 4877
[12] S. B. Zhang, S. H. Wei, A. Zunger, Physica B 273-274 (1999) 976
[13] T. Minami, T. Miyata, T. Yamamoto, Surface and Coatings Technology 108, (1998) 583
[14] J. S. Kim, B. Lagel, E. Moons, N. Johansson, I. D. Baikie, W. R. Salaneck, R. Friend, F. Cacialli, Synthetic Metals 111, (2000) 311.