Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32722
Effect of the Support Shape on Fischer-Tropsch Cobalt Catalyst Performance

Authors: Jian Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying


Cobalt catalysts were supported on extruded silica carrier and different-type (SiO2, γ-Al2O3) commercial supports with different shapes and sizes to produce heavy hydrocarbons for Fischer-Tropsch synthesis. The catalysts were characterized by N2 physisorption and H2-TPR. The catalytic performance of the catalysts was tested in a fixed bed reactor. The results of Fischer-Tropsch synthesis performance showed that the cobalt catalyst supported on spherical silica supports displayed a higher activity and a higher selectivity to C5+ products, due to the fact that the active components were only distributed in the surface layer of spherical carrier, and the influence of gas diffusion restriction on catalytic performance was weakened. Therefore, it can be concluded that the eggshell cobalt catalyst was superior to precious metals modified catalysts in the synthesis of heavy hydrocarbons.

Keywords: Fischer-Tropsch synthesis, cobalt catalyst, support shape, heavy hydrocarbons.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700


[1] E. Iglesia, S. L. Soled, R. A. Fiato, "Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity." J. Catal. Vol. 137, no. 1, pp. 212-224, 1992.
[2] A. Y. Khodakov, W. Chu, P. Fongarland, "Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels." Chem. Rev. Vol. 107, no. 5, pp. 1692-1744, 2007.
[3] K. Srirangan, L. Akawi, M. Moo-Young, C. P. Chou, "Towards sustainable production of clean energy carriers from biomass resources." Appl. Energ. Vol. 100, no. 8, pp. 172-186, 2012.
[4] H. Xiong, L. L. Jewell, N. J. Coville, "Shaped Carbons As Supports for the Catalytic Conversion of Syngas to Clean Fuels." ACS Catal. Vol. 5, no. 4, pp. 2640-2658, 2015.
[5] A. Griboval-Constant, A. Butel, V. V. Ordomsky, P. A. Chernavskii, A. Y. Khodakov, "Cobalt and iron species in alumina supported bimetallic catalysts for Fischer-Tropsch reaction." Appl. Catal. A: Gen Vol. 481, no., pp. 116-126, 2014.
[6] M. J. Parnian, A. Taheri Najafabadi, Y. Mortazavi, A. A. Khodadadi, I. Nazzari, "Ru promoted cobalt catalyst on γ-Al2O3: Influence of different catalyst preparation method and Ru loadings on Fischer-Tropsch reaction and kinetics." Appl. Surf. Sci. Vol. 313, no., pp. 183-195, 2014.
[7] J. Huang, W. Qian, H. Zhang, W. Ying, "Investigation on Fischer-Tropsch Synthesis over Cobalt-Gadolinium Catalyst." World Academy of Science, Engineering and Technology, International Journal of Chemical and Molecular Engineering Vol. 10, no. 8, pp. 1042-1045, 2016.
[8] J. Huang, W. Qian, H. Zhang, W. Ying, "Influences of ordered mesoporous silica on product distribution over Nb-promoted cobalt catalyst for Fischer-Tropsch synthesis." Fuel Vol. 216, no., pp. 843-851, 2018.
[9] T. O. Eschemann, W. S. Lamme, R. L. Manchester, T. E. Parmentier, A. Cognigni, M. Rønning, K. P. de Jong, "Effect of support surface treatment on the synthesis, structure, and performance of Co/CNT Fischer-Tropsch catalysts." J. Catal. Vol. 328, no., pp. 130-138, 2015.
[10] X. Zhang, H. Su, Y. Zhang, X. Gu, "Effect of CeO2 promotion on the catalytic performance of Co/ZrO2 catalysts for Fischer-Tropsch synthesis." Fuel Vol. 184, no., pp. 162-168, 2016.
[11] T. O. Eschemann, K. P. de Jong, "Deactivation Behavior of Co/TiO2 Catalysts during Fischer-Tropsch Synthesis." ACS Catal. Vol. 5, no., pp. 3181-3188, 2015.
[12] L. Spadaro, F. Arena, M. Granados, M. Ojeda, J. Fierro, F. Frusteri, "Metal-support interactions and reactivity of Co/CeO2 catalysts in the Fischer-Tropsch synthesis reaction." J. Catal. Vol. 234, no. 2, pp. 451-462, 2005.
[13] H. Wu, Y. Yang, H. Suo, M. Qing, L. Yan, B. Wu, J. Xu, H. Xiang, Y. Li, "Effects of ZrO2 promoter on physic-chemical properties and activity of Co/TiO2-SiO2 Fischer-Tropsch catalysts." J. Mol. Catal. A: Chem Vol. 396, no., pp. 108-119, 2015.
[14] Z. Cai, J. Li, K. Liew, J. Hu, "Effect of La2O3-dopping on the Al2O3 supported cobalt catalyst for Fischer-Tropsch synthesis." J. Mol. Cata.l A: Chem. Vol. 330, no. 1-2, pp. 10-17, 2010.
[15] J. Huang, W. Qian, H. Zhang, W. Ying, "In situ investigation on Co-phase evolution and its performance for Fischer-Tropsch synthesis over Nb-promoted cobalt catalysts." Catal. Sci. Technol. Vol. 7, no. 23, pp. 5530-5539, 2017.
[16] M. A. Coronel-García, A. I. Reyes de la Torre, J. A. Melo-Banda, A. L. Martínez-Salazar, R. Silva Rodrigo, N. P. Díaz Zavala, B. Portales Martínez, J. M. Domínguez, "Study of Co, Ru/SBA-15 type materials for Fischer-Tropsch synthesis in fixed bed tubular reactor: I. Effect of the high Ru content on the catalytic activity." Int. J. Hydrogen. Energ. Vol. 40, no. 48, pp. 17264-17271, 2015.
[17] M. F. M. Post, A. C. V. T. Hoog, J. K. Minderhoud, S. T. Sie, "Diffusion limitations in Fischer-Tropsch catalysts." AIChE J. Vol. 35, no. 7, pp. 1107-1114, 1989.
[18] S. A. Gardezi, J. T. Wolan, B. Joseph, "Effect of catalyst preparation conditions on the performance of eggshell cobalt/SiO2 catalysts for Fischer-Tropsch synthesis." Appl. Catal. A: Gen Vol. 447-448, no., pp. 151-163, 2012.
[19] W. H. Zimmerman, J. A. Rossin, D. B. Bukur, "Effect of particle size on the activity of a fused iron Fischer-Tropsch catalyst." Ind. Eng. Chem. Res. Vol. 28, no. 4, pp. 406-413, 1989.
[20] J. Huang, W. Qian, H. Ma, H. Zhang, W. Ying, "Highly selective production of heavy hydrocarbons over cobalt-graphene-silica nanocomposite catalysts." RSC Advances Vol. 7, no. 53, pp. 33441-33449, 2017.