Search results for: Thermal properties.
2839 Performance Evaluation of a Diesel Engine Fueled with Methyl Ester of shea Butter
Authors: Christopher C. Enweremadu, Hilary L. Rutto, Najeem Peleowo
Abstract:
Biodiesel as an alternative fuel for diesel engines has been developed for some three decades now. While it is gaining wide acceptance in Europe, USA and some parts of Asia, the same cannot be said of Africa. With more than 35 countries in the continent depending on imported crude oil, it is necessary to look for alternative fuels which can be produced from resources available locally within any country. Hence this study presents performance of single cylinder diesel engine using blends of shea butter biodiesel. Shea butter was transformed into biodiesel by transesterification process. Tests are conducted to compare the biodiesel with baseline diesel fuel in terms of engine performance and exhaust emission characteristics. The results obtained showed that the addition of biodiesel to diesel fuel decreases the brake thermal efficiency (BTE) and increases the brake specific fuel consumption (BSFC). These results are expected due to the lower energy content of biodiesel fuel. On the other hand while the NOx emissions increased with increase in biodiesel content in the fuel blends, the emissions of carbon monoxide (CO), un-burnt hydrocarbon (UHC) and smoke opacity decreased. The engine performance which indicates that the biodiesel has properties and characteristics similar to diesel fuel and the reductions in exhaust emissions make shea butter biodiesel a viable additive or substitute to diesel fuel.
Keywords: Biodiesel, diesel engine, engine performance and emission, shea butter, transesterification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25932838 Some Remarkable Properties of a Hopfield Neural Network with Time Delay
Authors: Kelvin Rozier, Vladimir E. Bondarenko
Abstract:
It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections. The neural network under the study consists of 10 identical neurons. For symmetric (fully connected) networks all interneuron connections aij = +1; the interneuron connections for asymmetric networks form an upper triangular matrix with non-zero entries aij = +1. The behavior of the network is described by 10 differential equations, which are solved numerically. The results of simulations demonstrate some remarkable properties of a Hopfield neural network, such as linear growth of outputs, dependence of synchronization properties on the connection type, huge amplification of oscillation by the external uniform noise, and the capability of the neural network to transform one type of noise to another.Keywords: Chaos, Hopfield neural network, noise, synchronization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18912837 Improving Gas Separation Performance of Poly(Vinylidene Fluoride) Based Membranes Containing Ionic Liquid
Authors: S. Al-Enezi, J. Samuel, A. Al-Banna
Abstract:
Polymer based membranes are one of the low-cost technologies available for the gas separation. Three major elements required for a commercial gas separating membrane are high permeability, high selectivity, and good mechanical strength. Poly(vinylidene fluoride) (PVDF) is a commercially available fluoropolymer and a widely used membrane material in gas separation devices since it possesses remarkable thermal, chemical stability, and excellent mechanical strength. The PVDF membrane was chemically modified by soaking in different ionic liquids and dried. The thermal behavior of modified membranes was investigated by differential scanning calorimetry (DSC), and thermogravimetry (TGA), and the results clearly show the best affinity between the ionic liquid and the polymer support. The porous structure of the PVDF membranes was clearly seen in the scanning electron microscopy (SEM) images. The CO₂ permeability of blended membranes was explored in comparison with the unmodified matrix. The ionic liquid immobilized in the hydrophobic PVDF support exhibited good performance for separations of CO₂/N₂. The improved permeability of modified membrane (PVDF-IL) is attributed to the high concentration of nitrogen rich imidazolium moieties.
Keywords: PVDF, gas permeability, polymer membrane, ionic liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10482836 Annealing of the Contact between Graphene and Metal: Electrical and Raman Study
Authors: A. Sakavičius, A. Lukša, V. Nargelienė, V. Bukauskas, G. Astromskas, A. Šetkus
Abstract:
We investigate the influence of annealing on the properties of a contact between graphene and metal (Au and Ni), using circular transmission line model (CTLM) contact geometry. Kelvin probe force microscopy (KPFM) and Raman spectroscopy are applied for characterization of the surface and interface properties. Annealing causes a decrease of the metal-graphene contact resistance for both Ni and Au.Keywords: Graphene, Kelvin force probe microscopy, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13672835 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy
Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie
Abstract:
NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.
Keywords: Heat treatment, phase transformation, superelasticity, NiTi alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6992834 Development of Cellulose Panels with Porous Structure for Sustainable Building Insulation
Authors: P. Garbagnoli, M. Musitelli, B. Del Curto, MP. Pedeferri
Abstract:
The study and development of an innovative material for building insulation is really important for a sustainable society in order to improve comfort and reducing energy consumption. The aim of this work is the development of insulating panels for sustainable buildings based on an innovative material made by cardboard and Phase Change Materials (PCMs). The research has consisted in laboratory tests whose purpose has been the obtaining of the required properties for insulation panels: lightweight, porous structures and mechanical resistance. PCMs have been used for many years in the building industry as smart insulation technology because of their properties of storage and release high quantity of latent heat at useful specific temperatures [1]- [2]. The integration of PCMs into cellulose matrix during the waste paper recycling process has been developed in order to obtain a composite material. Experiments on the productive process for the realization of insulating panels were done in order to make the new material suitable for building application. The addition of rising agents demonstrated the possibility to obtain a lighter structure with better insulation properties. Several tests were conducted to verify the new panel properties. The results obtained have shown the possibility to realize an innovative and sustainable material suitable to replace insulating panels currently used.Keywords: Sustainability, recycling, waste cardboard, PCM, cladding system, insulating materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22972833 The Use of Plant-Based Natural Fibers in Reinforced Cement Composites
Authors: N. AlShaya, R. Alhomidan, S. Alromizan, W. Labib
Abstract:
Plant-based natural fibers are used more increasingly in construction materials. It is done to reduce the pressure on the built environment, which has been increased dramatically due to the increases world population and their needs. Plant-based natural fibers are abundant in many countries. Despite the low-cost of such environmental friendly renewable material, it has the ability to enhance the mechanical properties of construction materials. This paper presents an extensive discussion on the use of plant-based natural fibers as reinforcement for cement-based composites, with a particular emphasis upon fiber types; fiber characteristics, and fiber-cement composites performance. It also covers a thorough overview on the main factors, affecting the properties of plant-based natural fiber cement composite in it fresh and hardened state. The feasibility of using plant-based natural fibers in producing various construction materials; such as, mud bricks and blocks is investigated. In addition, other applications of using such fibers as internal curing agents as well as durability enhancer are also discussed. Finally, recommendation for possible future work in this area is presented.
Keywords: Cement composites, plant fibers, strength, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21762832 The Effect of Interlamellar Distance in Pearlite on CGI Machining
Authors: Anders Berglund, Cornel Mihai Nicolescu, Henrik Svensson
Abstract:
Swedish truck industry is investigating the possibility for implementing the use of Compacted Graphite Iron (CGI) in their heavy duty diesel engines. Compared to the alloyed gray iron used today, CGI has superior mechanical properties but not as good machinability. Another issue that needs to be addressed when implementing CGI is the inhomogeneous microstructure when the cast component has different section thicknesses, as in cylinder blocks. Thinner sections results in finer pearlite, in the material, with higher strength. Therefore an investigation on its influence on machinability was needed. This paper focuses on the effect that interlamellar distance in pearlite has on CGI machinability and material physical properties. The effect of pearlite content and nodularity is also examined. The results showed that interlamellar distance in pearlite did not have as large effect on the material physical properties or machinability as pearlite content. The paper also shows the difficulties of obtaining a homogeneous microstructure in inhomogeneous workpieces.Keywords: Compacted graphite iron (CGI), machinability, microstructure, milling, interlamellar distance in pearlite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22052831 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties
Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd
Abstract:
Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well known formulas.Keywords: Conjugate gradient method, conjugate gradient coefficient, global convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22942830 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite – A Molecular Dynamics Analysis
Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar
Abstract:
Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular / nanoscale models is demonstrated.
Keywords: Cement composite, Mechanical Properties, Molecular Dynamics, Plasticizer additives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25722829 Investigation of Hydraulic and Thermal Performances of Fin Array at Different Shield Positions without By-Pass
Authors: Ramy H. Mohammed
Abstract:
In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, we present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43.
Keywords: Shield, Fin array, Performance evaluation, Heat transfer, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18392828 Modal Propagation Properties of Elliptical Core Optical Fibers Considering Stress-Optic Effects
Authors: M. Shah Alam, Sarkar Rahat M. Anwar
Abstract:
The effect of thermally induced stress on the modal properties of highly elliptical core optical fibers is studied in this work using a finite element method. The stress analysis is carried out and anisotropic refractive index change is calculated using both the conventional plane strain approximation and the generalized plane strain approach. After considering the stress optical effect, the modal analysis of the fiber is performed to obtain the solutions of fundamental and higher order modes. The modal effective index, modal birefringence, group effective index, group birefringence, and dispersion of different modes of the fiber are presented. For propagation properties, it can be seen that the results depend much on the approach of stress analysis.Keywords: Birefringence, dispersion, elliptical core fiber, optical mode analysis, stress-optic effect, stress analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22902827 Preparation and Some Mechanical Properties of Composite Materials Made from Sawdust, Cassava Starch and Natural Rubber Latex
Authors: Apusraporn Prompunjai, Waranyou Sridach
Abstract:
The composite materials were prepared by sawdust, cassava starch and natural rubber latex (NR). The mixtures of 15%w/v gelatinized cassava starch and 15%w/v PVOH were used as the binder of these composite materials. The concentrated rubber latex was added to the mixtures. They were mixed rigorously to the treated sawdust in the ratio of 70:30 until achive uniform dispersion. The batters were subjected to the hot compression moulding at the temperature of 160°C and 3,000 psi pressure for 5 min. The experimental results showed that the mechanical properties of composite materials, which contained the gelatinized cassava starch and PVOH in the ratio of 2:1, 20% NR latex by weight of the dry starch and treated sawdust with 5%NaOH or 1% BPO, were the best. It contributed the maximal compression strength (341.10 + 26.11 N), puncture resistance (8.79 + 0.98 N/mm2) and flexural strength (3.99 + 0.72N/mm2). It is also found that the physicochemical and mechanical properties of composites strongly depends on the interface quality of sawdust, cassava starch and NR latex.
Keywords: Composites, sawdust, cassava starch, natural rubber (NR) latex, surface chemical treatments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41012826 Determining Full Stage Creep Properties from Miniature Specimen Creep Test
Authors: W. Sun, W. Wen, J. Lu, A. A. Becker
Abstract:
In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.Keywords: Creep damage property, analytical solutions, inverse approach, miniature specimen test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7822825 An Implementation of a Dual-Spin Spacecraft Attitude Reorientation Using Properties of Its Chaotic Motion
Authors: Anton V. Doroshin
Abstract:
This article contains a description of main ideas for the attitude reorientation of spacecraft (small dual-spin spacecraft, nanosatellites) using properties of its chaotic attitude motion under the action of internal perturbations. The considering method based on intentional initiations of chaotic modes of the attitude motion with big amplitudes of the nutation oscillations, and also on the redistributions of the angular momentum between coaxial bodies of the dual-spin spacecraft (DSSC), which perform in the purpose of system’s phase space changing.
Keywords: Spacecraft, Attitude Dynamics and Control, Chaos.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19432824 Rotor Concepts for the Counter Flow Heat Recovery Fan
Authors: Christoph Speer
Abstract:
Decentralized ventilation systems should combine a small and economical design with high aerodynamic and thermal efficiency. The Counter Flow Heat Recovery Fan (CHRF) provides the ability to meet these requirements by using only one cross flow fan with a large number of blades to generate both airflows and which simultaneously acts as a regenerative counter flow heat exchanger. The successful development of the first laboratory prototype has shown the potential of this ventilation system. Occurring condensate on the surfaces of the fan blades during the cold and dry season can be recovered through the characteristic mode of operation. Hence the CHRF provides the possibility to avoid the need for frost protection and condensate drain. Through the implementation of system-specific solutions for flow balancing and summer bypass the required functionality is assured. The scalability of the CHRF concept allows the use in renovation as well as in new buildings from single-room devices through to systems for office buildings. High aerodynamic and thermal efficiency and the lower number of required mechatronic components should enable a reduction in investment as well as operating costs. The rotor is the key component of the system, the requirements and possible implementation variants are presented.
Keywords: CHRF, counter flow heat recovery fan, decentralized ventilation system, renovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8932823 Basicity of Jordanian Natural Clays Studied by Pyrrole-tpd and Catalytic Conversion of Methylbutynol
Authors: M. Z. Alsawalha
Abstract:
The main objective of this study is to investigate basic properties of different natural clays, by two methods. The first method is a gas phase conversion of methylbutynol (MBOH). The second method is the application of Pyrrole-tpd. Based on the product distribution from the first method, the acidic, basic and coordinately unsaturated sites were differentiated. It was shown that both the conversion and the selectivity for basic products did not change with reaction time. Nevertheless, a deviation from the stoichiometric ratio R of formed acetylene to acetone was observed (R=0.8…0.97). The conversion normalized to the surface area was used for establishing the activity sequence: White kaolinite > red kaolinite > bentonite > zeolite > diatomite. In addition, the results were compared with synthetic amorphous alumosilicates and typical basic materials like MgO and ZnO. The basic properties were characterized using the Pyrrole-tpd. The Pyrrole-tpd results showed the same basicity sequence as the MBOH gas phase reaction.
Keywords: Alumosilicates, basic surface properties, natural clays, normalized conversions with acetylene and acetone, pyrrole-TPD adsorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11202822 Effect of Blanching on the Quality of Microwave Vacuum Dried Dill (Anethum graveolens L.)
Authors: Evita Straumite, Zanda Kruma, Ruta Galoburda, Kaiva Saulite
Abstract:
Dill (Anethum graveolens L.) is a popular herb used in many regions, including Baltic countries. Dill is widely used for flavoring foods and beverages due to its pleasant spicy aroma. The aim of this work was to determine the best blanching method for processing of dill prior to microwave vacuum drying based on sensory properties, color and volatile compounds in dried product. Two blanching mediums were used – water and steam, and for part of samples microwave pretreatment was additionally used. Evaluation of dried dill volatile aroma compounds, color changes and sensory attributes was performed. Results showed that blanching significantly influences the quality of dried dill. After evaluation of volatile aroma compounds, color and sensory properties of microwave vacuum dried dill, as the best method for dill pretreatment was established blanching at 90 °C for 30 s.Keywords: dried dill, sensory panel, sensory properties, aroma compounds, color
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21782821 A File Splitting Technique for Reducing the Entropy of Text Files
Authors: Abdel-Rahman M. Jaradat, , Mansour I. Irshid, Talha T. Nassar
Abstract:
A novel file splitting technique for the reduction of the nth-order entropy of text files is proposed. The technique is based on mapping the original text file into a non-ASCII binary file using a new codeword assignment method and then the resulting binary file is split into several subfiles each contains one or more bits from each codeword of the mapped binary file. The statistical properties of the subfiles are studied and it is found that they reflect the statistical properties of the original text file which is not the case when the ASCII code is used as a mapper. The nth-order entropy of these subfiles are determined and it is found that the sum of their entropies is less than that of the original text file for the same values of extensions. These interesting statistical properties of the resulting subfiles can be used to achieve better compression ratios when conventional compression techniques are applied to these subfiles individually and on a bit-wise basis rather than on character-wise basis.
Keywords: Bit-wise compression, entropy, file splitting, source mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14462820 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing
Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani
Abstract:
The paper presents an additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.
Keywords: Brazing, Laminated Object Manufacturing, Tensile Lap-Shear Test, Thermo-Mechanical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19032819 LCA/CFD Studies of Artisanal Brick Manufacture in Mexico
Authors: H. A. Lopez-Aguilar, E. A. Huerta-Reynoso, J. A. Gomez, J. A. Duarte-Moller, A. Perez-Hernandez
Abstract:
Environmental performance of artisanal brick manufacture was studied by Lifecycle Assessment (LCA) methodology and Computational Fluid Dynamics (CFD) analysis in Mexico. The main objective of this paper is to evaluate the environmental impact during artisanal brick manufacture. LCA cradle-to-gate approach was complemented with CFD analysis to carry out an Environmental Impact Assessment (EIA). The lifecycle includes the stages of extraction, baking and transportation to the gate. The functional unit of this study was the production of a single brick in Chihuahua, Mexico and the impact categories studied were carcinogens, respiratory organics and inorganics, climate change radiation, ozone layer depletion, ecotoxicity, acidification/ eutrophication, land use, mineral use and fossil fuels. Laboratory techniques for fuel characterization, gas measurements in situ, and AP42 emission factors were employed in order to calculate gas emissions for inventory data. The results revealed that the categories with greater impacts are ecotoxicity and carcinogens. The CFD analysis is helpful in predicting the thermal diffusion and contaminants from a defined source. LCA-CFD synergy complemented the EIA and allowed us to identify the problem of thermal efficiency within the system.
Keywords: LCA, CFD, brick, artisanal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18752818 Performance, Emission and Combustion Characteristics of a Variable Compression Ratio Diesel Engine Fueled with Karanj Biodiesel and Its Blends
Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare
Abstract:
The use of biodiesel in conventional diesel engines results in substantial reduction of unburned hydrocarbon, carbon monoxide and particulate matters. The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio engine when fueled with Karanja (Pongamia) methyl ester and its 10-50 % blends with diesel (on a volume basis) are investigated and compared with standard diesel. The suitability of karanja methyl ester as a biofuel has been established in this study. The useful brake power obtained is similar to diesel fuel for all loads. Experiment has been conducted at a fixed engine speed of 1500 rpm, variable load and at compression ratios of 17.5:1 and 18.5:1. The impact of compression ratio on fuel consumption, combustion pressures and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives best performance has been identified. The results indicate longer ignition delay, maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for pongamia oil methyl ester when compared to that of diesel. The brake thermal efficiency for pongamia oil methyl ester blends and diesel has been calculated and the blend B20 is found to give maximum thermal efficiency. The blends when used as fuel results in reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions. PME as an oxygenated fuel generated more complete combustion, which means increased torque and power. This is also supported with higher thermal efficiencies of the PME blends. NOx is slightly increased due to the higher combustion temperature and the presence of fuel oxygen with the blend at full load. PME as a new Biodiesel and its blends can be used in diesel engines without any engine modification.
Keywords: Variable compression ratio CI engine, performance, combustion, emissions, biodiesel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33002817 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem
Authors: Yu T. Tsai, Jin H. Huang
Abstract:
In this paper, the specific sound Transmission Loss (TL) of the Laminated Composite Plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.Keywords: Sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19732816 Theoretical Modeling and Experimental Study of Combustion and Performance Characteristics of Biodiesel in Turbocharged Low Heat Rejection D.I Diesel Engine
Authors: B.Rajendra Prasath, P.Tamilporai, Mohd.F.Shabir
Abstract:
An effort has been taken to simulate the combustion and performance characteristics of biodiesel fuel in direct injection (D.I) low heat rejection (LHR) diesel engine. Comprehensive analyses on combustion characteristics such as cylinder pressure, peak cylinder pressure, heat release and performance characteristics such as specific fuel consumption and brake thermal efficiency are carried out. Compression ignition (C.I) engine cycle simulation was developed and modified in to LHR engine for both diesel and biodiesel fuel. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. A gas-wall heat transfer calculations are based on the ANNAND-s combined heat transfer model with instantaneous wall temperature to analyze the effect of coating on heat transfer. The simulated results are validated by conducting the experiments on the test engine under identical operating condition on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha oil) blended with diesel and used in both conventional and LHR engine. The simulated combustion and performance characteristics results are found satisfactory with the experimental value.Keywords: Biodiesel, Direct injection, Low heat rejection, Turbocharged engine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27762815 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties
Authors: Petr Homola, Roman Růžek
Abstract:
Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.
Keywords: Fatigue, fracture surface, laser beam micro-drilling, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7792814 Application of Biomass Ashes as Supplementary Cementitious Materials in the Cement Mortar Production
Authors: S. Šupić, M. Malešev, V. Radonjanin, M. Radeka, M. Laban
Abstract:
The production of low cost and environmentally friendly products represents an important step for developing countries. Biomass is one of the largest renewable energy sources, and Serbia is among the top European countries in terms of the amount of available and unused biomass. Substituting cement with the ashes obtained by the combustion of biomass would reduce the negative impact of concrete industry on the environment and would provide a waste valorization by the reuse of this type of by-product in mortars and concretes manufacture. The study contains data on physical properties, chemical characteristics and pozzolanic properties of obtained biomass ashes: wheat straw ash and mixture of wheat and soya straw ash in Serbia, which were, later, used as supplementary cementitious materials in preparation of mortars. Experimental research of influence of biomass ashes on physical and mechanical properties of cement mortars was conducted. The results indicate that the biomass ashes can be successfully used in mortars as substitutes of cement without compromising their physical and mechanical performances.
Keywords: Biomass, ash, cementitious material, mortar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9442813 Pilot Scale Production and Compatibility Criteria of New Self-Cleaning Materials
Authors: J. Ranogajec, O. Rudic, S. Pasalic, S. Vucetic, D. Cjepa
Abstract:
The paper involves a chain of activities from synthesis, establishment of the methodology for characterization and testing of novel protective materials through the pilot production and application on model supports. It summarizes the results regarding the development of the pilot production protocol for newly developed self-cleaning materials. The optimization of the production parameters was completed in order to improve the most important functional properties (mineralogy characteristics, particle size, self-cleaning properties and photocatalytic activity) of the newly designed nanocomposite material.
Keywords: Cultural heritage. Materials compatibility. Pilot production. Self-cleaning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23192812 An Investigation on Climate Responsive Design Strategies of Apartment Buildings in Athens of the Period 1920-1960s
Authors: E. Alexandrou, A. Chronopoulou
Abstract:
This paper thoroughly investigates residential buildings of the period 1920-1960 in Athens and evaluates their bioclimatic response and energy performance. A methodology adapted to the specific context of the city is proposed and applied in order to assess and extract results related to the climate analysis of the city of Athens, the general/architectural design and construction characteristics of the apartment buildings constructed during the period 1920-1960, the bioclimatic strategies applied on them, and the achieved thermal comfort based on questionnaires answered by their users. The results of the current study indicate that the residential architecture of that period in the city of Athens is adapted to an extent to the local climate with various climate responsive strategies. As an outcome of the analysis, the most frequently applied strategies depending on the period of construction are presented. For this reason, the examined period is divided into 3 sub – periods: 1st period, 1920s-1930s (late neoclassicism & eclecticism), 2nd period, 1930s-1940s (modernism), 3rd period, 1940s-1960s (postwar modernism).
Keywords: Athens, climatic design strategies, residential buildings, middle war and post war architecture, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4552811 Electromagnetic Tuned Mass Damper Approach for Regenerative Suspension
Authors: S. Kopylov, C. Z. Bo
Abstract:
This study is aimed at exploring the possibility of energy recovery through the suppression of vibrations. The article describes design of electromagnetic dynamic damper. The magnetic part of the device performs the function of a tuned mass damper, thereby providing both energy regeneration and damping properties to the protected mass. According to the theory of tuned mass damper, equations of mathematical models were obtained. Then, under given properties of current system, amplitude frequency response was investigated. Therefore, main ideas and methods for further research were defined.
Keywords: Electromagnetic damper, oscillations with two degrees of freedom, regeneration systems, tuned mass damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11002810 Applications of High Intensity Ultrasound to Modify Millet Protein Concentrate Functionality
Authors: B. Nazari, M. A. Mohammadifar, S. Shojaee-Aliabadi, L. Mirmoghtadaie
Abstract:
Millets as a new source of plant protein were not used in food applications due to its poor functional properties. In this study, the effect of high intensity ultrasound (frequency: 20 kHz, with contentious flow) (US) in 100% amplitude for varying times (5, 12.5, and 20 min) on solubility, emulsifying activity index (EAI), emulsion stability (ES), foaming capacity (FC), and foaming stability (FS) of millet protein concentrate (MPC) were evaluated. In addition, the structural properties of best treatments such as molecular weight and surface charge were compared with the control sample to prove the US effect. The US treatments significantly (P<0.05) increased the solubility of the native MPC (65.8±0.6%) at all sonicated times with the maximum solubility that is recorded at 12.5 min treatment (96.9±0.82 %). The FC of MPC was also significantly affected by the US treatment. Increase in sonicated time up to 12.5 min significantly increased the FC of native MPC (271.03±4.51 ml), but higher increase reduced it significantly. Minimal improvements were observed in the FS of all sonicated MPC compared to the native MPC. Sonicated time for 12.5 min affected the EAI and ES of the native MPC more markedly than 5 and 20 min that may be attributed to higher increase in proteins tendency to adsorption at the oil and water interfaces after the US treatment at this time. SDS-PAGE analysis showed changes in the molecular weight of MPC that attributed to shearing forces created by cavitation phenomenon. Also, this phenomenon caused an increase in the exposure of more amino acids with negative charge in the surface of US treated MPC, that was demonstrated by Zetasizer data. High intensity ultrasound, as a green technology, can significantly increase the functional properties of MPC and can make this usable for food applications.Keywords: Millet protein concentrate, Functional properties, Structural properties, High intensity ultrasound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737