Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33085
Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy

Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie

Abstract:

NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.

Keywords: Heat treatment, phase transformation, superelasticity, NiTi alloy.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3566377

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697

References:


[1] J.M. Jani, M. Leary, A. Subic, M.A. Gibson, Materials and Designs, 2014, 56, 1078-1113.
[2] L. Lecce, A. Concilio, Shape Memory Alloys Engineering, Elsevier publication, 2014.
[3] K.K. Alaneme, E.A. Okotete, N. Maledi, Materials Research and Technology, 2017, 6, 2, 136-146.
[4] K. Yamauchi, I. Ohkata, K. Tsuchiya, s. Miyazaki, Shape memory and super elastic alloys, Woodhead Publishing, 2011.
[5] R.K. Miller, T. Walker. Survey on Shape Memory Alloys’ Survey Reports, Future Technology Surveys, 1989, 17-27.
[6] D. J. Hartl, D. C. Lagoudas, Thermomechanical Characterization of Shape Memory Alloy Materials, shape memory alloys, springer publication 2008.
[7] R. Abeyaratne, J.K. Knowles, 1993, 41, 3, 541-571.
[8] K. Otsuka, C.M. Wayman, Shape Memory Materials, Cambridge University Press, 1998.
[9] S.Y. Yang, G.S. Dui, Solids and Structures, 2013, 50, 20-21, 3254-3265.
[10] H. Yin, Y. He, 2014, 67, 100-128.
[11] T. Saburi, in Shape Memory Materials, Cambridge University Press, 1998.
[12] T. Duerig, A. Pelton, D. Stockel, Materials Science Engineering, 1999, 273-275,149-160.
[13] M.J. Garcia-Ramirez, R. Lopez-sesenes, I. Rosales-Cadena, J.G. Gonzalez-Rodriguez, Materials Research and Technology, 2017.
[14] C. L. Chu, J. CY. Chung, P.K. Chu, Transactions of Nonferrous Metals Society of China, 2006, 16, 1, 49-53.
[15] B. Yuan, CY Chung, M Zhu, Materials Science and Engineering, 2004, 382, 1-2, 181-187.
[16] K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki, shape memory and super elastic alloys, Woodhead Publishing, 2011.
[17] M. Nishida, C.M. Wayman, T. Honma, Metallurgical Transactions, 1986, 17, 9, 1505-1515.
[18]
[18] D. J. Hartl, D. C. Lagoudas, Thermomechanical Characterization of Shape Memory Alloy Materials, shape memory alloys, Springer Publication’s, 2008.
[19] T.S. Spini, F.P. Valarelli, R.H. Cançado, Rodrigo Hermont, K.M. Salvatore de, D.J. Villarinho, Applied Oral Science, 2013, 22.
[20] S.Y. Jiang, Y.G. Zhang, Y.N. Zhao, S.W. Liu, L. Hu, C.Z. Zhao, Transaction of non-ferrous metals society of china, 2015, 25, 12, 4063-4071.
[21] P.G. McCormick, Yinong liu, Acta Metallurgica et Materialia, 1994, 42, 7, 2407-2413.
[22] K. Sadrnezhad, F. Mashhadi, R. Sharghi, Materials and Manufacturing Process, 1997, 12, 1, 107-115.
[23] C. Chluba, W. Ge, R de Miranda, J. Strobel, L Kienle, E. Quandt, M. Wuttig, science, 2015, 348, 6238, 1004-1007.
[24] C. Yu, G. Kang, D. Song, Q. Kan, plasticity, 2015, 67, 69-101.
[25] M.L. Lethabane, P.A. Olubambi, H.K. Chikwanda, Materials Research and Technology, 2015, 4, 4, 367-376.
[26] D.A. Miller, D.C. Lagoudas, Materials Science and Engineering, 2001, 308, 1-2, 161-175.
[27] V. Birman, Applied Mechanic Reviews, 1997, 50, 11, 629-645.
[28] X. Wang, B. Verlinden, J.V. Humbeeck, Intermetallics, 2015, 62, 43-49.
[29] Y. Liu, Acta Materialia, 2015, 95, 411-427.
[30] M.S. Shakeri, H. Aghajani, Alloys and Compounds, 2013, 574, 119-123.
[31] G.K. Williamson, W.H. Hall, Acta metallurgica, 1, 1, 1953, 22-31.
[32] J. B. Holt, Z. A. Munir, materials science, 1986, 21, 1, 251-259.
[33] A. Hajalilou, M. Hashim, M. Nahavandi, I. Ismaila, Advanced Powder Technology, 2014, 25, 1, 423–429.
[34] C.N. Elias, M.A. Meyers, R.Z. Valiev, S.N. Monteiro, Materials Research and Technology, 2013, 2, 4, 340-350.
[35] A. Paryab, M. Asghar, N. Omid, B. Abouei, V. Eshraghi, Association of Metallurgical Engineers of Serbia, 2010, 16, 123–131.
[36] K. Kazemi-Choobi, J. Khalil-Allafi, A. Elhami, P. Asadi, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 10, 4429–4433.