
 

 

  
Abstract—It is known that an analog Hopfield neural network 

with time delay can generate the outputs which are similar to the 
human electroencephalogram. To gain deeper insights into the 
mechanisms of rhythm generation by the Hopfield neural networks 
and to study the effects of noise on their activities, we investigated 
the behaviors of the networks with symmetric and asymmetric 
interneuron connections. The neural network under the study consists 
of 10 identical neurons. For symmetric (fully connected) networks all 
interneuron connections aij = +1; the interneuron connections for 
asymmetric networks form an upper triangular matrix with non-zero 
entries aij = +1. The behavior of the network is described by 10 
differential equations, which are solved numerically. The results of 
simulations demonstrate some remarkable properties of a Hopfield 
neural network, such as linear growth of outputs, dependence of 
synchronization properties on the connection type, huge 
amplification of oscillation by the external uniform noise, and the 
capability of the neural network to transform one type of noise to 
another. 
 

Keywords—Chaos, Hopfield neural network, noise, 
synchronization  

I. INTRODUCTION 

HAOTIC neural networks are subjects of intensive 
investigations during the last several decades [1]. 

Different aspects of the chaotic neural network behavior were 
studied, such as their stability properties [2], conditions for 
synchronization [3], generation of different types of chaotic 
activities [4], and information processing [5]. In particular, 
significant attention is paid to the Hopfield neural networks 
with time delays, which can produce chaotic activity similar to 
the human or animal electroencephalogram (EEG) [6]-[8]. It 
was shown that such a neural network can generate activities 
with the correlation dimensions and the largest Lyapunov 
exponents, which are close to those obtained from the human 
EEG analysis [6], [7]. Due to this fact and that these neural 
nets were useful in testing methods of the human EEG analysis 
they have been called “synthetic brains”  [9], [10]. 

While a number of different studies of the Hopfield neural 
networks have been performed, there has been little attention 
to the variety of different types of activities generated by 
Hopfield neural networks. In this paper, we consider relatively 
simple analog Hopfield neural networks with excitatory 
connections and fixed time delay. We found that the Hopfield 
neural network shows several remarkable properties depending 
on the type of the connection matrix (symmetric or 
asymmetric) and the connection strength.  
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These properties include complete synchronization in time 

and amplitudes, synchronization in time only, decaying and 
growing output amplitudes, including unusual linear growth of 
the output amplitude. We also show that the application of 
uniform noise to the Hopfield neural network under one of the 
above-mentioned regimes produced irregular behavior with 
different properties. Finally, we demonstrated that this neural 
network with applied noise can significantly amplify low-
amplitude oscillations.  

II. METHODS 

An analog Hopfield neural network with time delay is 
described by the set of ordinary differential equations [6]: 
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where ui(t) is the input of the ith neuron, aij is the connectivity 
matrix, τ is the time delay of the jth neuron, ( ) tanh( ),f x c x=  i, 

j = 1, 2, …, M, c is the coupling strength, ξ(t) is the external 
uniform noise, which varies in the interval [−1, +1], <ξ(t)> = 
0, and d is the noise amplitude. We studied the neural network 
with ten neurons (M = 10) and the fixed value of time delay τ 
= 10.0. The model equations were solved by the 4th order 
Runge-Kutta method with dimensionless time step 0.1. Very 
small random values of ui(0) in the interval [−2·10−100, 
2·10−100] were used as initial conditions. For the time t in the 
interval from –τ to less than 0 all ui = 0. Total length of the 
simulated time series were equal to N = 218 = 262,144 of 
dimensionless units. The neural network model was 
implemented as C++ code which was run on a 64-bit operating 
system. 

In this paper, we studied neural networks with the 
coefficients aij = +1 for all i, j = 1, 2, …, M (fully connected 
neural network, or symmetric neural network) and aij = +1 for 
all i = 1, 2, …, M and j = i, …, M (neural network with an 
upper triangular matrix of connections, or asymmetric neural 
network). Using an upper triangular matrix allows for 
investigation of the effects of asymmetry on the neural network 
dynamics. In simulations, the coefficient c was varied from 
0.01 to 10.0. 

To calculate the amplitude distribution function for time 
series { ui} , i = 1, 2, …, N, obtained in this study on the fixed 
interval [umin, umax] we divide this  interval into 128 
subintervals with length ∆ = (umax − umin)/128. Then, for each 
subinterval, we calculated the number of ui, which fall into a 
subinterval. In addition, we evaluated the energy function E 
according to the equation: 
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is the average value of {ui}, A is the normalization constant. 
To compare shapes of the amplitude distribution functions 

for the time series that varies in wide range of amplitudes, we 
also calculated the normalized amplitude distribution function, 
using 128 normalized subintervals: 

4 .n E∆ = ∆  

III.  RESULTS 

A. Hopfield Neural Networks without Noise 

First we investigated the behavior of the Hopfield neural 
networks without an external noise. Fig. 1 shows the time 
behavior of the neural outputs in a fully connected neural 
network. There are two different types of the network’s 
behavior, depending on the value of the coupling strength c. 
When c < cth (Fig. 1A; cth ≈ 0.103 is the threshold value of c, 
when decaying neural outputs transform into growing outputs), 
we observe initial decay of the neural output amplitudes from 
the initial conditions. At the time moment t = 10.0 all decaying 
outputs become completely synchronized, both in time and in 
amplitude (Fig. 1A). 

.At the larger (suprathreshold) value of c = 1.0, initially 
decaying neural outputs become growing outputs in time (Fig. 
1B). As in the case of subthreshold activity, the outputs are 
fully synchronized, both in time and in amplitude. The 
growing amplitudes increase until saturation (Fig. 1C) at the 
values of ui = M × c (10 × 1.0 = 10.0), which is typical 
behavior for the unstable nonlinear system. The neural outputs 
also contain growing oscillations, which are superimposed 
with an exponentially growing component of the neural 
outputs (Fig. 1D). The oscillation quasi-period is 
approximately equal to the time delay τ = 10.0 in 
dimensionless units. Once saturating values of the neural 
outputs are reached the oscillations cease. 

To investigate the effects of asymmetry on the neural 
network dynamics, we used an upper triangular connectivity 
matrix aij. Incorporation of asymmetry remarkably changed the 
neural network dynamics. At subthreshold values of c = 0.1 (c 
< cth ≈ 0.996; Fig. 2A), the neural network outputs first decay 
from their initial values. Then, at t = 10.0, the outputs become 
decaying oscillations, which are synchronized, however, in 
time only (compare to outputs in Fig. 1A of the fully 
connected neural network). 

 

 

   

 
Fig. 1 Activity of the fully connected neural network with aij = 1 
and without noise (d = 0.0). (A) Subthreshold case (c = 0.05). 

Decaying oscillations. (B) Suprathreshold case (c = 1.0). Growing 
oscillations. (C) Suprathreshold case (c = 1.0). Growing amplitudes 

saturate. (D) Suprathreshold case (c = 1.0). Oscillatory activity of the 
neural network is superimposed with an exponentially growing 

component 

When c = 1.0 > cth, the neural outputs represent growing 
oscillations (Fig. 2B). As in the case of subthreshold activity, 
the neural outputs have different magnitudes and are 
synchronized in time only. Fig. 2C demonstrates typical 
suprathreshold activity of the neural network with an upper 
triangular connectivity matrix. This includes three major 
stages: 1) exponential growth, which is typical for the most 
unstable nonlinear systems; 2) unusual linearly growing neural 
network outputs (see Fig. 2D for details); and 3) saturation, 
which is also often observed in many nonlinear dynamical 
systems. In addition, the threshold value cth for the neural 
network with the upper triangular connectivity matrix is 
significantly (by a factor of ∼10) greater compared to the fully 
connected network, pointing to the stabilizing effect of the 
asymmetry of interneuron connections.  
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Fig. 2 Activity of the neural network with upper triangular 

connectivity matrix aij and without noise (d = 0.0). (A) Subthreshold 
case (c = 0.1). Decaying oscillations. (B) Suprathreshold case (c = 

1.0). Growing oscillations. (C) Suprathreshold case (c = 2.0). 
Growing amplitudes saturate; an interval of linear growth is 

observed.  (D) Suprathreshold case (c = 2.0). Closer look at the 
linearly growing neural network outputs 

B. Hopfield Neural Networks with Noise 

We also studied the effects of uniform noise on the activity 
of a fully connected Hopfield neural network and a neural 
network with an upper triangular connectivity matrix. The 
noise was generated by a random number generator, which 
produced uniformly distributed amplitudes on the interval [−1, 
1]. Fig. 3A shows the initial part of the time series of uniform 
noise used in this study, and the amplitude distribution 
diagram is shown in Fig. 3B. The noise time series of 262,144 
points is used for the calculation of the diagram. The interval 
[−1, 1] was divided into 128 subintervals with the length ∆ = 
2/128 = 0.015625, and the number of points in each 
subinterval was calculated. The distribution diagram for the 
amplitudes of uniform noise plotted in Fig. 3B clearly show 
their good uniform distribution. 

 

 
Fig. 3 (A) Time series of the external uniform noise ξ(t). Only first 

200 points are shown. (B) Amplitude distribution diagram for 
uniform noise calculated from times series of 262,144 points 

 

 

 
Fig. 4 Neural network outputs under influence of external noise (c = 
0.05 (subthreshold case, fully connected neural network); d = 1.0 (A) 
and d = 0.1 (B)). Panel C shows details of fully synchronous activity 

from panel A 

 We first studied the effects of noise on a fully connected 
Hopfield neural network at c = 0.05 (subthreshold case). Fig. 
4A shows neural network outputs under the effects of a 
uniform noise (noise amplitude d = 1.0). It is interesting to 
note that the neural output amplitudes vary in significantly 
smaller intervals than the amplitude of applied noise (compare 
Figs. 4A and 3A). At smaller magnitudes of the applied noise 
(d = 0.1), the neural outputs also show smaller amplitudes 
(Fig. 4B). Another interesting property of the neural network 
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activity is that all neurons in the network demonstrate 
synchronous behavior since the very first time moment, once 
the noise is applied (Fig. 4C). 

 

 

Fig. 5 Amplitude distribution functions (A) and normalized 
amplitude distribution functions (B) for the neural network outputs 

under influence of the external noise and for amplitudes of the 
external noise (c = 0.05, subthreshold case of the fully connected 

neural network) 

It is remarkable that the Hopfield neural network transforms 
properties of the external uniform noise. This transformation is 
illustrated by Fig. 5. Fig. 5A shows two amplitude 
distributions, one is for uniform noise (filled circles) and 
another is for neural network outputs for all 10 neurons 
(unfilled circles, d = 1.0). The noise amplitude is distributed 
uniformly on the interval [−1, 1], while the distribution of the 
amplitudes of neural outputs at the noise amplitude d = 1.0 is 
bell-shaped (Fig. 5A). At smaller values of d = 0.1, neural 
network outputs have smaller magnitudes (Fig. 4B). Due to 
small amplitudes, the distribution function for this case has 
non-zero values only in a few subintervals about zero (data not 
shown). To obtain amplitude distribution functions, which are 
not strictly bound to the frame on the interval [−1, 1], we 
employed calculations of the normalized amplitude 
distribution function, as described in the Methods section. The 
normalized amplitude distribution functions for uniform noise 
and for neural network outputs at d = 1.0 and d = 0.1 are 
shown in Fig. 5B. The uniform noise has a rectangular 
distribution function, while both neural network outputs show 
bell-shaped distributions. Note that despite the 10-fold 
difference in neural output amplitudes (Fig. 4, A and B), their 
normalized distribution functions are very similar (unfilled 
circles and unfilled diamonds in Fig. 5B). 

 

 

 
Fig. 6 The activity of the fully connected neural network with 
external noise. Suprathreshold case (c = 1.0); external noise 

amplitudes are d = 1.0 (A), d = 1.0×10−6 (B), and d = 1.0×10−60 (C) 
 
We also investigated the effects of external uniform noise 

on a fully connected Hopfield neural network at 
suprathreshold values of c. Similar to the case when noise is 
absent, the neural network outputs increase in magnitudes until 
saturation, and the neural outputs are fully synchronized (Fig. 
6). There are two major effects of noise on the network 
activity: a decrease of the time interval to the output saturation 
and huge transient amplification of the oscillatory component. 
Fig. 6A shows transient large-amplitude oscillations, which 
become visible on the increasing part of the neural outputs in 
the presence of noise (noise amplitude is d = 1.0; compare 
with small-amplitude oscillations in Fig. 1D where d = 0.0). In 
this case, the neural network acts as a powerful amplifier that 
can increase oscillation amplitude by approximately 90 orders 
of magnitude. Even relatively small noise with d = 1.0×10−6 
can remarkably amplify small-amplitude oscillations until they 
become visible on the background of rising outputs (Fig. 6B). 
The uniform noise with much smaller magnitude d = 1.0×10−60 
cannot produce visible amplification of oscillations. However, 
it significantly increases the rate of growth in neural outputs 
and shortens the time interval to output saturation (Fig. 6C). 
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Fig. 7 Neural network outputs under influence of external noise: c = 

0.1, d = 1.0, subthreshold case, neural network with asymmetric 
connections. Panel B shows details of asynchronous activity from 

panel A 

To investigate the effects of connection asymmetry on a 
Hopfield neural network activity with the applied external 
uniform noise, we studied behavior of the neural network with 
asymmetric connections. At subthreshold values of c = 0.1 the 
neural network produces irregular outputs (Fig. 7A). It is 
interesting that unlike in corresponding case of fully connected 
neutral network, which generated synchronous irregular 
oscillations, the neural network with asymmetric connections 
produces asynchronous outputs (see details in Fig. 7B). This 
points to the fact that asymmetry in interneuron connections 
changes synchronization properties of the neural network. 

 
Fig. 8 Normalized amplitude distribution functions of the neural 

network outputs with the external noise (bell-shaped distributions for 
all 10 neurons are plotted) and for the amplitudes of external noise 

(filled circles): c = 0.1, subthreshold case, neural network with 
asymmetric connections 

The next question is whether the neural network with upper 
triangular matrix of connection has the same transformation 
properties, as the fully connected neural network. For this 
purpose, we calculated amplitude distribution functions for the 
outputs of each neuron in the neural network with asymmetric 
connections. Simulation data are shown in Fig. 8. All 10 
neurons in the network have bell-shaped normalized amplitude 

distribution functions shown by different symbols. For 
comparison, normalized amplitude distribution function for 
uniform noise is shown in Fig. 8 by filled circles. It is seen that 
the asymmetric neural network transforms external uniform 
noise into irregular neural outputs with bell-shaped distribution 
functions. However, unlike in case with fully connected neural 
network, such neural outputs are not synchronized with each 
other (Fig. 7B). 

 

 

Fig. 9 Activity of the neural network with upper triangular matrix of 
connections and external noise. Suprathreshold case (c = 2.0); 
external noise amplitudes are d = 1.0 (A) and d = 1.0×10−6 (B). 

Finally, we investigated a suprathreshold case of neural 
activity of the network with asymmetric connections. In this 
case, the neural outputs possess properties of both symmetric 
neural network with the applied noise and asymmetric neural 
network without noise. As in the case of the symmetric 
network, the noise causes huge amplification of small-
amplitude oscillations on the interval where the neural outputs 
transition to the saturation values (d = 1.0, Fig. 9A). Different 
neural outputs saturate at different magnitudes, depending on 
the number of neural inputs. At smaller values of d = 1.0×10−6, 
the amplification of oscillations is to lesser amplitudes (Fig. 
9B). The smaller noise amplitude also leads to a longer time 
interval for the neural outputs to achieve saturation levels. 

IV.  CONCLUSION 

We simulated the behavior of an analog Hopfield neural 
network with time delay. The results of simulations show that 
the symmetric neural network without noise produces behavior 
commonly seen in other nonlinear dynamical systems, i. e., the 
exponential growth of amplitudes until saturation. In 
asymmetric neural networks, we found an additional unusual 
type of behavior − an interval of linear growth before 
saturation. Neural networks with symmetric and asymmetric 
connections and without external noise demonstrate different 
synchronization properties. The outputs of the symmetric 
neural networks are fully synchronous (both in time and in 
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amplitude), while the asymmetric neural network outputs are 
synchronized in time only. There are similarities and 
differences in the effects of the uniform external noise on the 
behavior of Hopfield neural networks. In subthreshold cases, 
symmetric and asymmetric neural networks demonstrate 
different synchronization properties: the outputs of symmetric 
networks are fully synchronized, while the outputs of 
asymmetric networks are not synchronous. Both synchronous 
and asynchronous neural networks transform the uniform 
amplitude distribution function of the external noise into bell-
shaped amplitude distribution functions of the neural outputs. 
In suprathreshold cases, both neural networks demonstrate 
huge amplification of the oscillatory component of the neural 
outputs by the external noise and noise-induced decrease in the 
time interval for the outputs to achieve their saturation values.  
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