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Abstract—It is known that an analog Hopfield neural network
with time delay can generate the outputs which are similar to the
human electroencephalogram. To gain deeper insights into the
mechanisms of rhythm generation by the Hopfield neural networks
and to study the effects of noise on their activities, we investigated
the behaviors of the networks with symmetric and asymmetric
interneuron connections. The neural network under the study consists
of 10 identical neurons. For symmetric (fully connected) networks all
interneuron connections a; = +1; the interneuron connections for
asymmetric networks form an upper triangular matrix with non-zero
entries g; = +1. The behavior of the network is described by 10
differential equations, which are solved numerically. The results of
simulations demonstrate some remarkable properties of a Hopfield
neural network, such as linear growth of outputs, dependence of
synchronization properties on the connection type, huge
amplification of oscillation by the external uniform noise, and the
capability of the neura network to transform one type of noise to
another.
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|. INTRODUCTION

CHAOTIC neural networks are subjects of intensive
investigations during the last several decades [1].
Different aspects of the chaotic neural network behavior were
studied, such as their stability properties [2], conditions for
synchronization [3], generation of different types of chaotic
activities [4], and information processing [5]. In particular,
significant attention is paid to the Hopfield neural networks
with time delays, which can produce chaotic activity similar to
the human or animal electroencephalogram (EEG) [6]-[8]. It
was shown that such a neural network can generate activities
with the correlation dimensions and the largest Lyapunov
exponents, which are close to those obtained from the human
EEG analysis [6], [7]. Due to this fact and that these neura
nets were useful in testing methods of the human EEG analysis
they have been called “synthetic brains’ [9], [10].

While a number of different studies of the Hopfield neural
networks have been performed, there has been little attention
to the variety of different types of activities generated by
Hopfield neural networks. In this paper, we consider relatively
simple analog Hopfield neural networks with excitatory
connections and fixed time delay. We found that the Hopfield
neural network shows several remarkable properties depending
on the type of the connection matrix (symmetric or
asymmetric) and the connection strength.
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These properties include complete synchronization in time
and amplitudes, synchronization in time only, decaying and
growing output amplitudes, including unusual linear growth of
the output amplitude. We aso show that the application of
uniform noise to the Hopfield neural network under one of the
above-mentioned regimes produced irregular behavior with
different properties. Finally, we demonstrated that this neural
network with applied noise can significantly amplify low-
amplitude oscillations.

Il.METHODS

An analog Hopfield neural network with time delay is
described by the set of ordinary differential equations[6]:

00 =50+ a1 (U, (-0) +deQ),

where uj(t) is the input of the i neuron, & is the connectivity
matrix, t is the time delay of thej™ neuron, f (x) = ctanh(x), i,
i=1 2 ..., M, cisthe coupling strength, &t) is the external
uniform noise, which varies in the interval [-1, +1], <&t)> =
0, and d is the noise amplitude. We studied the neural network
with ten neurons (M = 10) and the fixed value of time delay t
= 10.0. The model equations were solved by the 4™ order
Runge-Kutta method with dimensionless time step 0.1. Very
small random values of u(0) in the interval [-2:107%,
2:10™"%] were used as initial conditions. For the timet in the
interval from — to less than 0 all u; = 0. Tota length of the
simulated time series were equal to N = 2 = 262,144 of
dimensionless units. The neural network model was
implemented as C++ code which was run on a 64-bit operating
system.

In this paper, we studied neural networks with the
coefficientsa; = +1 for al i, j = 1, 2, ..., M (fully connected
neural network, or symmetric neural network) and &; = +1 for
ali=12 ..,Mandj =i, .., M (neura network with an
upper triangular matrix of connections, or asymmetric neura
network). Using an upper triangular matrix allows for
investigation of the effects of asymmetry on the neural network
dynamics. In simulations, the coefficient ¢ was varied from
0.01 to 10.0.

To caculate the amplitude distribution function for time
series{u}, i =1, 2, ..., N, obtained in this study on the fixed
interval [Umin, Um] We divide this interval into 128
subintervals with length A = (Upnax — Unmin)/128. Then, for each
subinterval, we calculated the number of u;, which fall into a
subinterval. In addition, we evaluated the energy function E
according to the equation:

el

i=1
where
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is the average value ofif, A is the normalization constant. 1e-100 1

To compare shapes of the amplitude distributiorctions
for the time series that varies in wide range opktodes, we
also calculated the normalized amplitude distriimutiunction, -2e-100
using 128 normalized subintervals:

A, = 4JEA.

Amplitude
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IIl. RESULTS 101

A.Hopfield Neural Networks without Noise

First we investigated the behavior of the Hopfieleural
networks without an external noise. Fig. 1 shows time
behavior of the neural outputs in a fully connectezlral
network. There are two different types of the nekig
behavior, depending on the value of the couplimgnsithc.
Whenc < ¢y, (Fig. 1A; ¢y = 0.103 is the threshold value af 1e-90
when decaying neural outputs transform into grovaatputs),
we observe initial decay of the neural output atogiés from
the initial conditions. At the time moment 10.0 all decaying
outputs become completely synchronized, both ire tand in .
amplitude (Fig. 1A). 100 110 120 130 140 150

At the larger (suprathreshold) value of= 1.0, initially Time
decaying neural outputs become growing outputgme (Fig. Fig. 1 Activity of the fully connected neural netikawith a; = 1
1B). As in the case of subthreshold activity, thepats are and without noised = 0.0). (A) Subthreshold case% 0.05).
fully synchronized, both in time and in amplitud@he  Decaying oscillations. (B) Suprathreshold case {c03. Growing
growing amplitudes increase until saturation (Fig) at the °scillations. (C) Suprathreshold case (c = 1.0pwing amplitudes
Values oft = M x ¢ (10 x 10 = 10.0), which is typical e, (0) Supraihreshold case (¢ < 1.0) @i actiiy of the
behavior for the unstable nonlinear system. Thealeutputs P co?nponent pones g
also contain growing oscillations, which are sumgdsed )
with an exponentially growing component of the réur When ¢ = 1.0 >cy, the neural outputs represent growing
outputs (Fig. 1D). The oscillation quasi-period joscillations (Fig. 2B). As in the case of subthmdhactivity,
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approximately equal to the time delay = 10.0 in the neural outputs have different magnitudes ane ar
dimensionless units. Once saturating values of riearal Synchronized in time only. Fig. 2C demonstratesicgip
outputs are reached the oscillations cease. suprathreshold activity of the neural network with upper

To investigate the effects of asymmetry on the aleyrtriangular connectivi.ty matrix. Th.is i.nclud(.es thremajor
network dynamics, we used an upper triangular octiviy ~ Stages: 1) ex.ponentlal growth, which is typ|cal_ foe most
matrix &;. Incorporation of asymmetry remarkably changed thgnstable nonlinear systems; 2) unusual_llnearlyngg negral
neural network dynamics. At subthreshold values of0.1 ¢ Nétwork outputs (see Fig. 2D for details); and &usation,
< ¢y = 0.996; Fig. 2A), the neural network outputs fidscay which is also of_tgn observed in many nonlinear dyical
from their initial values. Then, at= 10.0, the outputs become SYStems. In addition, the threshold valgg for the neural
decaying oscillations, which are synchronized, hewe in network with the upper triangular connectivity npatis

time only (compare to outputs in Fig. 1A of the ljul Significantly (by a factor of110) greater compared to the fully
connected neural network). connected network, pointing to the stabilizing effef the

asymmetry of interneuron connections.
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Fig. 2 Activity of the neural network with upperamngular
connectivity matrixg; and without noised(= 0.0). (A) Subthreshold
case ¢ = 0.1). Decaying oscillations. (B) Suprathreshedde (c =
1.0). Growing oscillations. (C) Suprathreshold da@se 2.0).
Growing amplitudes saturate; an interval of lingawth is
observed. (D) Suprathreshold case (c = 2.0). Clos& at the
linearly growing neural network outputs

B. Hopfield Neural Networks with Noise

We also studied the effects of uniform noise onabtvity
of a fully connected Hopfield neural network andheural
network with an upper triangular connectivity matriThe
noise was generated by a random number generatichw
produced uniformly distributed amplitudes on theetiwal [-1,
1]. Fig. 3A shows the initial part of the time sariof uniform
noise used in this study, and the amplitude distiGimn
diagram is shown in Fig. 3B. The noise time seoie262,144
points is used for the calculation of the diagrdine interval
[-1, 1] was divided into 128 subintervals with thadth A =
2/128 =
subinterval was calculated. The distribution diagréor the
amplitudes of uniform noise plotted in Fig. 3B clgashow
their good uniform distribution.
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Fig. 3 (A) Time series of the external uniform reofgt). Only first

200 points are shown. (B) Amplitude distributioagtiam for
uniform noise calculated from times series of 282, foints
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ig. 4 Neural network outputs under influence deexal noised =
.05 (subthreshold case, fully connected neuraboréd; d = 1.0 (A)
andd = 0.1 (B)). Panel C shows details of fully synaioas activity
from panel A

We first studied the effects of noise on a fulgnoected
Hopfield neural network at = 0.05 (subthreshold case). Fig.
4A shows neural network outputs under the effedtsao
uniform noise (noise amplitudé = 1.0). It is interesting to
note that the neural output amplitudes vary in ificantly
smaller intervals than the amplitude of appliedsedicompare
Figs. 4A and 3A). At smaller magnitudes of the &aplhoise
(d = 0.1), the neural outputs also show smaller anoneis
(Fig. 4B). Another interesting property of the redunetwork
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activity is that all neurons in the network demoatst

. . . . A c=1.0,d=1.0
synchronous behavior since the very first time muatmence 10
the noise is applied (Fig. 4C). g
=
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01 oz Fig. 6 The activity of the fully connected neuratwork with
-64A, 644, external noise. Suprathreshold case (.0); external noise
Time series amplitude amplitudes are = 1.0 (A),d = 1.0x10°® (B), andd = 1.0x10°%° (C)
Fig. 5 Amplitude distribution functions (A) and mealized ] ] . ]
amplitude distribution functions (B) for the neunatwork outputs We also investigated the effects of external uniforoise
under influence of the external noise and for amgés of the on a fully connected Hopfield neural network at
external noiseq(= 0.05, subthreshold case of the fully connected suprathreshold values of Similar to the case when noise is
neural network) absent, the neural network outputs increase in inatgs until

It is remarkable that the Hopfield neural netwadnsforms ~Saturation, and the neural outputs are fully syowized (Fig.
properties of the external uniform noise. This $farmation is 6). There are two major effects of noise on thewoek
ilustrated by Fig. 5. Fig. 5A shows two amplitudeactivity: a decrease of the time interval to thépotisaturation
distributions, one is for uniform noise (filled cies) and and huge transient amplification of the oscillatoomponent.
another is for neural network outputs for all 10umms Fig. 6A shows transient large-amplitude oscillasionvhich
(unfilled circles,d = 1.0). The noise amplitude is distributedbecome visible on the increasing part of the neougbuts in
uniformly on the interval{1, 1], while the distribution of the the presence of noise (noise amplitudedis 1.0; compare
amplitudes of neural outputs at the noise amplidigel.0 is  with small-amplitude oscillations in Fig. 1D whede= 0.0). In
bell-shaped (Fig. 5A). At smaller values @f= 0.1, neural this case, the neural network acts as a powerfplifien that
network outputs have smaller magnitudes (Fig. 4B)e to can increase oscillation amplitude by approxima@gyorders
small amplitudes, the distribution function for thtase has of magnitude. Even relatively small noise with= 1.0<10°°
non-zero values only in a few subintervals abou Zdata not 5 remarkably amplify small-amplitude oscillatiamsil they
shown)_. To obtain amplitude distribution functlomhlch are  phecome visible on the background of rising outfitg. 6B).
not strictly bound to the frame on the intervall[ 1], We  tpo niform noise with much smaller magnitutie 1.0<10°%°
emp!oygd calcplaﬂons Of. thg normalized . amp“tUd%annot produce visible amplification of oscillatiorHowever,
distribution function, as described in the Methedstion. The .. . .. . )
normalized amplitude distribution functions for famm noise it significantly Increases the rate of growth wurui outputs
and for neural network outputs dt= 1.0 andd = 0.1 are and shortens the time interval to output saturatiog. 6C).
shown in Fig. 5B. The uniform noise has a rectaagul
distribution function, while both neural networktputs show
bell-shaped distributions. Note that despite the-fol®
difference in neural output amplitudes (Fig. 4, #d&), their
normalized distribution functions are very simil@unfilled
circles and unfilled diamonds in Fig. 5B).
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Fig. 7 Neural network outputs under influence deexal noisec =
0.1,d = 1.0, subthreshold case, neural network with asgiric
connections. Panel B shows details of asynchroaotisgty from
panel A

To investigate the effects of connection asymmetnya
Hopfield neural network activity with the applieckternal
uniform noise, we studied behavior of the neur&ivoek with
asymmetric connections. At subthreshold values ©f0.1 the
neural network produces irregular outputs (Fig. .7R)is
interesting that unlike in corresponding case 8y fconnected
neutral network, which generated synchronous ifeggu
oscillations, the neural network with asymmetricections
produces asynchronous outputs (see details in78y. This
points to the fact that asymmetry in interneuromrections
changes synchronization properties of the neurtatoré.

8000

6000 -

4000 -

Number of points
3
8

Time series amplitude

Fig. 8 Normalized amplitude distribution functioofsthe neural
network outputs with the external noise (bell-stthgistributions for
all 10 neurons are plotted) and for the amplitunfesxternal noise
(filled circles):c = 0.1, subthreshold case, neural network with
asymmetric connections

The next question is whether the neural network witper
triangular matrix of connection has the same ti@msétion
properties, as the fully connected neural netwdir this
purpose, we calculated amplitude distribution fiord for the
outputs of each neuron in the neural network wiynametric
connections. Simulation data are shown in Fig. 8. 1®
neurons in the network have bell-shaped normalaeplitude
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distribution functions shown by different symbols.or

comparison, normalized amplitude distribution fimet for

uniform noise is shown in Fig. 8 by filled circldsis seen that
the asymmetric neural network transforms extermaform

noise into irregular neural outputs with bell-shdyaiéstribution

functions. However, unlike in case with fully coted neural
network, such neural outputs are not synchronizéld gach
other (Fig. 7B).
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Time
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Fig. 9 Activity of the neural network with upperangular matrix of
connections and external noise. Suprathreshold(cas@.0);
external noise amplitudes ate= 1.0 (A) andd = 1.0x10°° (B).

Finally, we investigated a suprathreshold case edral
activity of the network with asymmetric connectioms this
case, the neural outputs possess properties ofdyatimetric
neural network with the applied noise and asymmetdural
network without noise. As in the case of the symimet
network, the noise causes huge amplification of llsma
amplitude oscillations on the interval where themé outputs
transition to the saturation values = 1.0, Fig. 9A). Different
neural outputs saturate at different magnitudepedeing on
the number of neural inputs. At smaller valuesl ef1.0x10°°,
the amplification of oscillations is to lesser aiues (Fig.
9B). The smaller noise amplitude also leads torgéo time
interval for the neural outputs to achieve sataratevels.

IV. CONCLUSION

We simulated the behavior of an analog Hopfieldrakeu
network with time delay. The results of simulatiesi®ow that
the symmetric neural network without noise produsgisavior
commonly seen in other nonlinear dynamical systénes, the
exponential growth of amplitudes until saturatiomn
asymmetric neural networks, we found an additiamalisual
type of behavior- an interval of linear growth before
saturation. Neural networks with symmetric and asgtnic
connections and without external noise demonsuldferent
synchronization properties. The outputs of the sgtnia
neural networks are fully synchronous (both in tiaved in
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amplitude), while the asymmetric neural networkpows are
synchronized
differences in the effects of the uniform externalse on the
behavior of Hopfield neural networks. In subthrddhcases,
symmetric and asymmetric neural
different synchronization properties: the outputsymmetric
networks are fully synchronized, while the outputé

asymmetric networks are not synchronous. Both symdus
and asynchronous neural networks transform theoumif
amplitude distribution function of the external smiinto bell-
shaped amplitude distribution functions of the aéwutputs.
In suprathreshold cases, both neural networks dstrade
huge amplification of the oscillatory componenttioé neural
outputs by the external noise and noise-inducededse in the
time interval for the outputs to achieve their sation values.
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