Search results for: vertical steel.
321 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete
Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews
Abstract:
In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).Keywords: Debonding, FRP, pull-out test, stepwise regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800320 Development of Orbital TIG Welding Robot System for the Pipe
Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim
Abstract:
This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).
Keywords: Adaptive welding, automatic welding, Pipe welding, Orbital welding, Laser vision sensor, LVS, welding D/B.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3868319 Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight
Authors: Marine Segui, Simon Bezin, Ruxandra Mihaela Botez
Abstract:
As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.Keywords: Aerodynamics, Cessna Citation X, optimization, winglet, adaptive, morphing, wing, aircraft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238318 Effects of Natural Frequency and Rotational Speed on Dynamic Stress in Spur Gear
Authors: Ali Raad Hassan, G. Thanigaiyarasu, V. Ramamurti
Abstract:
Natural frequencies and dynamic response of a spur gear sector are investigated using a two dimensional finite element model that offers significant advantages for dynamic gear analyses. The gear teeth are analyzed for different operating speeds. A primary feature of this modeling is determination of mesh forces using a detailed contact analysis for each time step as the gears roll through the mesh. Transient mode super position method has been used to find horizontal and vertical components of displacement and dynamic stress. The finite element analysis software ANSYS has been used on the proposed model to find the natural frequencies by Block Lanczos technique and displacements and dynamic stresses by transient mode super position method. A comparison of theoretical (natural frequency and static stress) results with the finite element analysis results has also been done. The effect of rotational speed of the gears on the dynamic response of gear tooth has been studied and design limits have been discussed.Keywords: Natural frequency, Modal and transientanalysis, Spur gear, Dynamic stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3657317 Thermal Cracking Respone of Reinforced Concrete Beam to Gradient Temperature
Authors: L. Dahmani, M.Kouane
Abstract:
In this paper are illustrated the principal aspects connected with the numerical evaluation of thermal stress induced by high gradient temperature in the concrete beam. The reinforced concrete beam has many advantages over steel beam, such as high resistance to high temperature, high resistance to thermal shock, Better resistance to fatigue and buckling, strong resistance against, fire, explosion, etc. The main drawback of the reinforced concrete beam is its poor resistance to tensile stresses. In order to investigate the thermal induced tensile stresses, a numerical model of a transient thermal analysis is presented for the evaluation of thermo-mechanical response of concrete beam to the high temperature, taking into account the temperature dependence of the thermo physical properties of the concrete like thermal conductivity and specific heat.Keywords: Cracking, Gradient Temperature, Reinforced Concrete beam, Thermo-mechanical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3693316 Evaluation Performance of PID, LQR, Pole Placement Controllers for Heat Exchanger
Authors: Mohamed Essahafi, Mustapha Ait Lafkih
Abstract:
In industrial environments, the heat exchanger is a necessary component to any strategy of energy conversion. Much of thermal energy used in industrial processes passes at least one times by a heat exchanger, and methods systems recovering thermal energy. This survey paper tries to presents in a systemic way an sample control of a heat exchanger by comparison between three controllers LQR (linear quadratic regulator), PID (proportional, integrator and derivate) and Pole Placement. All of these controllers are used mainly in industrial sectors (chemicals, petrochemicals, steel, food processing, energy production, etc…) of transportation (automotive, aeronautics), but also in the residential sector and tertiary (heating, air conditioning, etc...) The choice of a heat exchanger, for a given application depends on many parameters: field temperature and pressure of fluids, and physical properties of aggressive fluids, maintenance and space. It is clear that the fact of having an exchanger appropriate, well-sized, well made and well used allows gain efficiency and energy processes.
Keywords: LQR linear-quadratic regulator, PID control, Pole Placement, Heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4395315 Binarization of Text Region based on Fuzzy Clustering and Histogram Distribution in Signboards
Authors: Jonghyun Park, Toan Nguyen Dinh, Gueesang Lee
Abstract:
In this paper, we present a novel approach to accurately detect text regions including shop name in signboard images with complex background for mobile system applications. The proposed method is based on the combination of text detection using edge profile and region segmentation using fuzzy c-means method. In the first step, we perform an elaborate canny edge operator to extract all possible object edges. Then, edge profile analysis with vertical and horizontal direction is performed on these edge pixels to detect potential text region existing shop name in a signboard. The edge profile and geometrical characteristics of each object contour are carefully examined to construct candidate text regions and classify the main text region from background. Finally, the fuzzy c-means algorithm is performed to segment and detected binarize text region. Experimental results show that our proposed method is robust in text detection with respect to different character size and color and can provide reliable text binarization result.Keywords: Text detection, edge profile, signboard image, fuzzy clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226314 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics
Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari
Abstract:
This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.
Keywords: Axial loading, energy absorption performance, computational mechanics, crashworthiness behavior, deformation mode, thin-walled tubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158313 Knowledge Spillovers from Patent Citations: Evidence from Swiss Manufacturing Industry
Authors: Racha Khairallah, Lamia Ben Hamida
Abstract:
Our paper attempts to examine how Swiss manufacturing firms manage to learn from patent citations to improve their innovation performance. We argue that the assessment of these effects needs a detailed analysis of spillovers according to the source of knowledge with respect to formal and informal patent citations made in European and internal search, the horizontal and vertical mechanisms by which knowledge spillovers take place, and the technological characteristics of innovative firms that able them to absorb external knowledge and integrate it in their existing innovation process. We use Organisation for Economic Co-operation and Development (OECD) data and find evidence that knowledge spillovers occur only from horizontal and backward linkages. The importance of these effects depends on the type of citation, in which the references to non-patent literature (informal citations made in European and international searches) have a greater impact. In addition, only firms with high technological capacities benefit from knowledge spillovers from formal and informal citations. Low-technology firms fail to catch up and efficiently learn external knowledge from patent citations.
Keywords: Innovation performance, patent citation, absorptive capacity, knowledge spillover mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48312 Tumble Flow Analysis in an Unfired Engine Using Particle Image Velocimetry
Authors: B. Murali Krishna, J. M. Mallikarjuna
Abstract:
This paper deals with the experimental investigations of the in-cylinder tumble flows in an unfired internal combustion engine with a flat piston at the engine speeds ranging from 400 to 1000 rev/min., and also with the dome and dome-cavity pistons at an engine speed of 1000 rev/min., using particle image velocimetry. From the two-dimensional in-cylinder flow measurements, tumble flow analysis is carried out in the combustion space on a vertical plane passing through cylinder axis. To analyze the tumble flows, ensemble average velocity vectors are used and to characterize it, tumble ratio is estimated. From the results, generally, we have found that tumble ratio varies mainly with crank angle position. Also, at the end of compression stroke, average turbulent kinetic energy is more at higher engine speeds. We have also found that, at 330 crank angle position, flat piston shows an improvement of about 85 and 23% in tumble ratio, and about 24 and 2.5% in average turbulent kinetic energy compared to dome and dome-cavity pistons respectivelyKeywords: In-cylinder flow, Dome piston, Cavity, Tumble, PIV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281311 Application of Flexi-Wall in Noise Barriers Renewal
Authors: B. Daee, H. M. El Naggar
Abstract:
This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF) and polyurea. This wall system (flexi-wall) is intended to be employed as a vertical extension to existing sound barriers in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The result of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound barrier application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound barrier applications was also developed.Keywords: Noise barrier, Polyurethane Foam, Accelerated construction, Full-scale experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940310 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device
Authors: Muthana A. M. Jameel Al-Jaboori
Abstract:
In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.Keywords: Water wave, model, wells turbine, MATLAB program, results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180309 Ultimate Shear Resistance of Plate Girders Part 2- Höglund Theory
Authors: Ahmed S. Elamary
Abstract:
Ultimate shear resistance (USR) of slender plate girders can be predicted theoretically using Cardiff theory or Höglund theory. This paper will be concerned with predicting the USR using Höglund theory and EC3. Two main factors can affect the USR, the panel width “b” and the web depth “d”, consequently, the panel aspect ratio (b/d) has to be identified by limits. In most of the previous study, there is no limit for panel aspect ratio indicated. In this paper theoretical analysis has been conducted to study the effect of (b/d) on the USR. The analysis based on ninety six test results of steel plate girders subjected to shear executed and collected by others. New formula proposed to predict the percentage of the distance between the plastic hinges form in the flanges “c” to panel width “b”. Conservative limits of (c/b) have been suggested to get a consistent value of USR.
Keywords: Ultimate shear resistance, Plate Girder, Höglund’s theory, EC3.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4998308 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel during Pin on Disk Dry Wear Testing
Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed
Abstract:
This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load, while dropped with the increase in ambient temperature. The highest Tdiff was 289 °C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400 °C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data was revealed good agreement.
Keywords: Pin-on-disk test, contact temperature, wear, sliding surface, friction, ambient temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67307 Model Studies on Shear Behavior of Reinforced Reconstituted Clay
Abstract:
In this paper, shear behavior of reconstituted clay reinforced with varying diameter of sand compaction piles with area replacement-ratio (as) of 6.25, 10.24, 16, 20.25 and 64% in 100mm diameter and 200mm long clay specimens is modeled using consolidated drained and undrained triaxial tests under different confining pressures ranging from 50kPa to 575kPa. The test results show that the stress-strain behavior of the clay was highly influenced by the presence of SCP. The insertion of SCPs into soft clay has shown to have a positive effect on the load carrying capacity of the clay, resulting in a composite soil mass that has greater shear strength and improved stiffness compared to the unreinforced clay due to increased reinforcement area ratio. In addition, SCP also acts as vertical drain in the clay thus accelerating the dissipation of excess pore water pressures that are generated during loading by shortening the drainage path and activating radial drainage, thereby reducing post-construction settlement. Thus, sand compaction piles currently stand as one of the most viable and practical techniques for improving the mechanical properties of soft clays.Keywords: Reconstituted clay, SCP, shear strength, stress-strain response, triaxial tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494306 Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions
Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei
Abstract:
In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.
Keywords: Vibration, FGM, Cylindrical shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633305 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils
Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee
Abstract:
Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.
Keywords: Shear strength parameters, direct shear test, silty sand, shear stress, shear deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768304 Centrifuge Modeling of Monopiles Subjected to Lateral Monotonic Loading
Authors: H. R. Khodaei, M. Moradi, A. H. Tajik
Abstract:
The type of foundation commonly used today for berthing dolphins is a set of tubular steel piles with large diameters, which are known as monopiles. The design of these monopiles is based on the theories related with laterally loaded piles. One of the most common methods to analyze and design the piles subjected to lateral loads is the p-y curves. In the present study, centrifuge tests are conducted in order to obtain the p-y curves. Series of tests were designed in order to investigate the scaling laws in the centrifuge for monotonic loading. Also, two important parameters, the embedded depth L of the pile in the soil and free length e of the pile, as well as their ratios were studied via five experimental tests. Finally, the p-y curves of API are presented to be compared with the curves obtained from the tests so that the differences could be demonstrated. The results show that the p-y curves proposed by API highly overestimate the lateral load bearing capacity. It suggests that these curves need correction and modification for each site as the soil conditions change.
Keywords: Centrifuge modeling, monopile, lateral loading, p-y curves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850303 Verified Experiment: Intelligent Fuzzy Weighted Input Estimation Method to Inverse Heat Conduction Problem
Authors: Chen-Yu Wang, Tsung-Chien Chen, Ming-Hui Lee, Jen-Feng Huang
Abstract:
In this paper, the innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux efficiently as presented. The feasibility of this method can be verified by adopting the temperature measurement experiment. We would like to focus attention on the heat flux estimation to three kinds of samples (Copper, Iron and Steel/AISI 304) with the same 3mm thickness. The temperature measurements are then regarded as the inputs into the FWIEM to estimate the heat flux. The experiment results show that the proposed algorithm can estimate the unknown time-varying heat flux on-line.Keywords: Fuzzy Weighted Input Estimation Method, IHCP andHeat Flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540302 Effect of Including Thermal Process on Spot Welded and Weld-Bonded Joints
Authors: Essam A. Al-Bahkali
Abstract:
A three-dimensional finite element modeling for austenitic stainless steel AISI 304 annealed condition sheets of 1.0 mm thickness are developed using ABAQUS® software. This includes spot welded and weld bonded joints models. Both models undergo thermal heat caused by spot welding process and then are subjected to axial load up to the failure point. The properties of elastic and plastic regions, modulus of elasticity, fracture limit, nugget and heat affected zones are determined. Complete loaddisplacement curve for each joining model is obtained and compared with the experiment data and with the finite element models without including the effect of thermal process. In general, the results obtained for both spot welded and weld-bonded joints affected by thermal process showed an excellent agreement with the experimental data.
Keywords: Heat Affected Zone, Spot Welded, Thermal Process, Weld-Bonded.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594301 Study of Natural Convection in a Triangular Cavity Filled with Water: Application of the Lattice Boltzmann Method
Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri
Abstract:
The Lattice Boltzmann Method (LBM) with double populations is applied to solve the steady-state laminar natural convective heat transfer in a triangular cavity filled with water. The bottom wall is heated, the vertical wall is cooled, and the inclined wall is kept adiabatic. The buoyancy effect was modeled by applying the Boussinesq approximation to the momentum equation. The fluid velocity is determined by D2Q9 LBM and the energy equation is discritized by D2Q4 LBM to compute the temperature field. Comparisons with previously published work are performed and found to be in excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number from to and the inclination angle from 0° to 360°. Flow and thermal fields were exhibited by means of streamlines and isotherms. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.
Keywords: Heat transfer, inclination angle, Lattice Boltzmann Method, Nusselt number, Natural convection, Rayleigh number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757300 Effect of Hooked-End Steel Fibres Geometry on Pull-Out Behaviour of Ultra-High Performance Concrete
Authors: Sadoon Abdallah, Mizi Fan, Xiangming Zhou
Abstract:
In this study, a comprehensive approach has been adopted to examine in detail the effect of various hook geometries on bond-slip characteristics. Extensive single fibre pull-out tests on ultra-high performance matrix with three different W/B ratios and embedded lengths have been carried out. Test results showed that the mechanical deformation of fibre hook is the main mechanism governing the pull-out behaviour. Furthermore, the quantitative analyses have been completed to compare the hook design contribution of 3D, 4D and 5D fibres to assess overall pull-out behaviour. It was also revealed that there is a strong relationship between the magnitude of hook contribution and W/B ratio (i.e. matrix strength). Reducing the W/B ratio from 0.20 to 0.11 greatly optimizes the interfacial transition zone (ITZ) and enables better mobilization, straightening of the hook and results in bond-slip-hardening behaviour.
Keywords: Bond mechanisms, fibre-matrix interface, hook geometry, pullout behaviour and water to binder ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691299 Study on Connecting Method of Box Pontoons
Authors: Young-Jun You, Youn-Ju Jeong, Min-Su Park, Du-Ho Lee
Abstract:
Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example.
Keywords: Connection, floating container terminal, pontoon, pre-stressing, shear key.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3111298 DEA ANN Approach in Supplier Evaluation System
Authors: Dilek Özdemir, Gül Tekin Temur
Abstract:
In Supply Chain Management (SCM), strengthening partnerships with suppliers is a significant factor for enhancing competitiveness. Hence, firms increasingly emphasize supplier evaluation processes. Supplier evaluation systems are basically developed in terms of criteria such as quality, cost, delivery, and flexibility. Because there are many variables to be analyzed, this process becomes hard to execute and needs expertise. On this account, this study aims to develop an expert system on supplier evaluation process by designing Artificial Neural Network (ANN) that is supported with Data Envelopment Analysis (DEA). The methods are applied on the data of 24 suppliers, which have longterm relationships with a medium sized company from German Iron and Steel Industry. The data of suppliers consists of variables such as material quality (MQ), discount of amount (DOA), discount of cash (DOC), payment term (PT), delivery time (DT) and annual revenue (AR). Meanwhile, the efficiency that is generated by using DEA is added to the supplier evaluation system in order to use them as system outputs.
Keywords: Artificial Neural Network (ANN), DataEnvelopment Analysis (DEA), Supplier Evaluation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153297 Numerical Simulation of the Bond Behavior between Concrete and Steel Reinforcing Bars in Specialty Concrete
Authors: Camille A. Issa, Omar Masri
Abstract:
In this study, the commercial finite element software ABAQUS was used to develop a three-dimensional nonlinear finite element model capable of simulating the pull-out test of reinforcing bars from underwater concrete. The results of thirty-two pull-out tests that have different parameters were implemented in the software to study the effect of the concrete cover, the bar size, the use of stirrups, and the compressive strength of concrete. The interaction properties used in the model provided accurate results in comparison with the experimental bond-slip results, thus the model has successfully simulated the pull-out test. The results of the finite element model are used to better understand and visualize the distribution of stresses in each component of the model, and to study the effect of the various parameters used in this study including the role of the stirrups in preventing the stress from reaching to the sides of the specimens.Keywords: Bond strength, nonlinear finite element analysis, pull-out test, underwater concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4614296 Replacing Fibre Reinforced Concrete with Bitumen Asphalt in Airports
Authors: Y. Mohammadi, H. M. Ghasemzadeh, T. B. Talari, M. A. Ghorbani
Abstract:
Concrete pavement has superior durability and longer structural life than asphalt pavement. Concrete pavement requires less maintenance compared to asphalt pavement which requires maintenance and major rehabilitation. Use of the concrete pavement has been grown over the past decade in developing countries. Fibre reinforced concrete (FRC) has been successfully used in design of concrete pavement in past decade. In this research, the effect of fibre volume fraction in modulus of rupture, load-deflection, equivalent flexural strength (fe,3) and the equivalent flexural strength ratio (Re,3) has been used in different fibre volume fraction. Crimped-type flat steel fibre of size 50 x 2.0 x 0.6 mm was used with 1.0%, 1.5% and 2.0% volume fraction. Beam specimens of size 500 x 100 x 100 mm were used for flexural as well as with JCI method for analysis flexural toughness, equivalent flexural strength. It was obtained as the 2% fibre volume fractions; reduce 45% of the concrete pavement thickness.Keywords: Concrete pavement, Equivalent flexural strength, Fibre, Load-deflection curves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456295 Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator
Authors: Chiang-Ho Cheng, Hong-Yih Cheng, An-Shik Yang, Tung-Hsun Hsu
Abstract:
This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system.Keywords: Actuator, nozzle, microejector, piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095294 Comparison of Design Procedures for Pre Engineering Buildings (PEB): A Case Study
Authors: G. Sai Kiran , A. Kailasa Rao, R . Pradeep Kumar
Abstract:
In recent years, the introduction of Pre Engineered Building (PEB) concept in the design of structures has helped in optimizing design. The adoptability of PEB in the place of Conventional Steel Building (CSB) design concept resulted in many advantages, including economy and easier fabrication. In this study, an industrial structure (Ware House) is analyzed and designed according to the Indian standards, IS 800-1984, IS 800-2007 and also by referring MBMA-96 and AISC-89. In this study, a structure with length 187m,width 40m,with clear height 8m and having R-Slope 1:10,isconsidered to carry out analysis& design for 2D frames (End frame, frame without crane and frame with 3 module cranes). The economy of the structure is discussed in terms of its weight comparison, between Indian codes (IS800-1984, IS800-2007) & American code (MBMA-96), & between Indian codes (IS800-1984, IS800-2007).
Keywords: AISC, Crane Beam, MBMA, Pre-Engineered-Buildings, Staad Pro, Utilization Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6880293 Numerical Analysis of Geosynthetic-Encased Stone Columns under Laterally Loads
Authors: R. Ziaie Moayed, M. Hossein Zade
Abstract:
Out of all methods for ground improvement, stone column became more popular these days due to its simple construction and economic consideration. Installation of stone column especially in loose fine graded soil causes increasing in load bearing capacity and settlement reduction. Encased granular stone columns (EGCs) are commonly subjected to vertical load. However, they may also be subjected to significant amount of shear loading. In this study, three-dimensional finite element (FE) analyses were conducted to estimate the shear load capacity of EGCs in sandy soil. Two types of different cases, stone column and geosynthetic encased stone column were studied at different normal pressures varying from 15 kPa to 75 kPa. Also, the effect of diameter in two cases was considered. A close agreement between the experimental and numerical curves of shear stress - horizontal displacement trend line is observed. The obtained result showed that, by increasing the normal pressure and diameter of stone column, higher shear strength is mobilized by soil; however, in the case of encased stone column, increasing the diameter had more dominated effect in mobilized shear strength.
Keywords: Ordinary stone column, validation, encased stone column, laterally load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887292 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: Deep-learning, image classification, image identification, industrial engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758