Search results for: electrical machines
359 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network
Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna
Abstract:
This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.
Keywords: Optimization, distributed generation, integration, slime mould algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643358 Methanol Concentration Sensitive SWCNT/Nafion Composites
Authors: Kyongsoo Lee, , Seong-Il Kim, Byeong-Kwon Ju
Abstract:
An aqueous methanol sensor for use in direct methanol fuel cells (DMFCs) applications is demonstrated; the methanol sensor is built using dispersed single-walled carbon nanotubes (SWCNTs) with Nafion117 solution to detect the methanol concentration in water. The study is aimed at the potential use of the carbon nanotubes array as a methanol sensor for direct methanol fuel cells (DMFCs). The concentration of methanol in the fuel circulation loop of a DMFC system is an important operating parameter, because it determines the electrical performance and efficiency of the fuel cell system. The sensor is also operative even at ambient temperatures and responds quickly to changes in the concentration levels of the methanol. Such a sensor can be easily incorporated into the methanol fuel solution flow loop in the DMFC system.Keywords: methanol concentration, SWCNT, nafion composites
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928357 Interfacial Layer Effect on Novel p-Ni1-xO:Li/n-Si Heterojunction Solar Cells
Authors: Feng-Hao Hsu, Na-Fu Wang, Yu-Zen Tsai, Yu-Song Cheng, Cheng-Fu Yang, Mau-Phon Houng
Abstract:
This study fabricates p-type Ni1−xO:Li/n-Si heterojunction solar cells (P+/n HJSCs) by using radio frequency (RF) magnetron sputtering and investigates the effect of substrate temperature on photovoltaic cell properties. Grazing incidence x-ray diffraction, four point probe, and ultraviolet-visible-near infrared discover the optoelectrical properties of p-Ni1-xO thin films. The results show that p-Ni1-xO thin films deposited at 300 oC has the highest grain size (22.4 nm), average visible transmittance (~42%), and electrical resistivity (2.7 Ωcm). However, the conversion efficiency of cell is shown only 2.33% which is lower than the cell (3.39%) fabricated at room temperature. This result can be mainly attributed to interfacial layer thickness (SiOx) reduces from 2.35 nm to 1.70 nm, as verified by high-resolution transmission electron microscopy.
Keywords: Heterojunction, nickel oxide, solar cells, sputtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854356 Piezoelectric Approach on Harvesting Acoustic Energy
Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap
Abstract:
An Acoustic Micro-Energy Harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using Lumped Element Modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Then, AMEH undergoes bandwidth tuning for performance optimization. The AMEH successfully produces 0.9V/(m/s^2) and 1.79μW/(m^2/s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.Keywords: Piezoelectric, acoustic, energy harvester, thermoacoustic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3273355 Application of Boost Converter for Ride-through Capability of Adjustable Speed Drives during Sag and Swell Conditions
Authors: S. S. Deswal, Ratna Dahiya, D. K. Jain
Abstract:
Process control and energy conservation are the two primary reasons for using an adjustable speed drive. However, voltage sags are the most important power quality problems facing many commercial and industrial customers. The development of boost converters has raised much excitement and speculation throughout the electric industry. Now utilities are looking to these devices for performance improvement and reliability in a variety of areas. Examples of these include sags, spikes, or transients in supply voltage as well as unbalanced voltages, poor electrical system grounding, and harmonics. In this paper, simulations results are presented for the verification of the proposed boost converter topology. Boost converter provides ride through capability during sag and swell. Further, input currents are near sinusoidal. This eliminates the need of braking resistor also.Keywords: Adjustable speed drive, power quality, boost converter, ride through capabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696354 Study The Effects of Conventional and Low Input Production System on Energy Efficiency of Silybum marianum L.
Authors: M. Haj Seyed Hadi, M. Darzi, E. Sharifi Ashoorabadi
Abstract:
Medicinal plants are most suitable crops for ecological production systems because of their role in human health and the aim of sustainable agriculture to improve ecosystem efficiency and its products quality. Calculations include energy output (contents of energy in seed) and energy inputs (consumption of fertilizers, pesticides, labor, machines, fuel and electricity). The ratio of output of the production to inputs is called the energy outputs / inputs ratio or energy efficiency. One way to quantify essential parts of agricultural development is the energy flow method. The output / input energy ratio is proposed as the most comprehensive single factor in pursuing the objective of sustainability. Sylibum marianum L. is one of the most important medicinal plants in Iran and has effective role on health of growing population in Iran. The objective of this investigation was to find out energy efficiency in conventional and low input production system of Milk thistle. This investigation was carried out in the spring of 2005 – 2007 in the Research Station of Rangelands in Hamand - Damavand region of IRAN. This experiment was done in split-split plot based on randomized complete block design with 3 replications. Treatments were 2 production systems (Conventional and Low input system) in the main plots, 3 planting time (25 of March, 4 and 14 of April) in the sub plots and 2 seed types (Improved and Native of Khoozestan) in the sub-sub plots. Results showed that in conventional production system energy efficiency, because of higher inputs and less seed yield, was less than low input production system. Seed yield was 1199.5 and 1888 kg/ha in conventional and low input systems, respectively. Total energy inputs and out puts for conventional system was 10068544.5 and 7060515.9 kcal. These amounts for low input system were 9533885.6 and 11113191.8 kcal. Results showed that energy efficiency for seed production in conventional and low input system was 0.7 and 1.16, respectively. So, milk thistle seed production in low input system has 39.6 percent higher energy efficiency than conventional production system. Also, higher energy efficiency were found in sooner planting time (25 of March) and native seed of Khoozestan.
Keywords: energy efficiency, milk thistle, production system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622353 Endometrial Cancer Recognition via EEG Dependent upon 14-3-3 Protein Leading to an Ontological Diagnosis
Authors: Marios Poulos, Eirini Maliagani, Minas Paschopoulos, George Bokos
Abstract:
The purpose of my research proposal is to demonstrate that there is a relationship between EEG and endometrial cancer. The above relationship is based on an Aristotelian Syllogism; since it is known that the 14-3-3 protein is related to the electrical activity of the brain via control of the flow of Na+ and K+ ions and since it is also known that many types of cancer are associated with 14-3-3 protein, it is possible that there is a relationship between EEG and cancer. This research will be carried out by well-defined diagnostic indicators, obtained via the EEG, using signal processing procedures and pattern recognition tools such as neural networks in order to recognize the endometrial cancer type. The current research shall compare the findings from EEG and hysteroscopy performed on women of a wide age range. Moreover, this practice could be expanded to other types of cancer. The implementation of this methodology will be completed with the creation of an ontology. This ontology shall define the concepts existing in this research-s domain and the relationships between them. It will represent the types of relationships between hysteroscopy and EEG findings.Keywords: Bioinformatics, Protein 14-3-3, EEG, Endometrial cancer, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629352 Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology
Authors: S. W. Hong, Y. S. Choi, T. H. Chung, J. H. Song, H. S. Kim
Abstract:
Bio-electrical responses obtained from freshwater sediments by employing microbial fuel cell (MFC) technology were investigated in this experimental study. During the electricity generation, organic matter in the sediment was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that the sediment organic matter (SOM) associated with electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, together with the decrease in the quantity of SOM. The alteration of characteristics of the SOM was analogous to that commonly observed in the early stage of SOM diagenetic process (i.e., humification). These findings including an elevation of the sediment redox potential present a possibility of the MFC technology as a new soil/sediment remediation technique based on its potential benefits: non-destructive electricity generation and bioremediation.Keywords: Anaerobic oxidation, microbial fuel cell, remediation, sediment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039351 Prediction of the Characteristics of Transformer Oil under Different Operation Conditions
Authors: EL-Sayed M. M. EL-Refaie, Mohamed R. Salem, Wael A. Ahmed
Abstract:
Power systems and transformer are intrinsic apparatus, therefore its reliability and safe operation is important to determine their operation conditions, and the industry uses quality control tests in the insulation design of oil filled transformers. Hence the service period effect on AC dielectric strength is significant. The effect of aging on transformer oil physical, chemical and electrical properties was studied using the international testing methods for the evaluation of transformer oil quality. The study was carried out on six transformers operate in the field and for monitoring periods over twenty years. The properties which are strongly time dependent were specified and those which have a great impact on the transformer oil acidity, breakdown voltage and dissolved gas analysis were defined. Several tests on the transformers oil were studied to know the time of purifying or changing it, moreover prediction of the characteristics of it under different operation conditions.
Keywords: Dissolved Gas Analysis, Prediction, Purifying and Changing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3727350 Fabrication and Characterization of Al/Methyl Orange/n-Si Heterojunction Diode
Authors: Muhammad Tahir, Muhammad H. Sayyad, Dil N. Khan, Fazal Wahab
Abstract:
Herein, the organic semiconductor methyl orange (MO), is investigated for the first time for its electronic applications. For this purpose, Al/MO/n-Si heterojunction is fabricated through economical cheap and simple “drop casting” technique. The currentvoltage (I-V) measurements of the device are made at room temperature under dark conditions. The I-V characteristics of Al/MO/n-Si junction exhibits asymmetrical and rectifying behavior that confirms the formation of diode. The diode parameters such as rectification ratio (RR), turn on voltage (Vturn on), reverse saturation current (I0), ideality factor (n), barrier height ( b f ), series resistance (Rs) and shunt resistance (Rsh) are determined from I-V curves using Schottky equations. These values of these parameters are also extracted and verified by applying Cheung’s functions. The conduction mechanisms are explained from the forward bias I-V characteristics using the power law.Keywords: Electrical properties, Organic/inorganic heterojunction diode, Methyl Orange, Cheungs Functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930349 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines
Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl
Abstract:
Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. This is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that is based on controlintegrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. This paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. It starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art of pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general posedependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.Keywords: Dynamic behavior, lightweight, machine tool, pose-dependency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844348 Microgrid: Low Power Network Topology and Control
Authors: Amit Sachan
Abstract:
The network designing and data modeling developments which are the two significant research tasks in direction to tolerate power control of Microgrid concluded using IEC 61850 data models and facilities. The current casing areas of IEC 61580 include infrastructures in substation automation systems, among substations and to DERs. So, for LV microgrid power control, previously using the IEC 61850 amenities to control the smart electrical devices, we have to model those devices as IEC 61850 data models and design a network topology to maintenance all-in-one communiqué amid those devices. In adding, though IEC 61850 assists modeling a portion by open-handed several object models for common functions similar measurement, metering, monitoring…etc., there are motionless certain missing smithereens for building a multiplicity of functions for household appliances like tuning the temperature of an electric heater or refrigerator.
Keywords: IEC 61850, RCMC, HCMC, DER Unit Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498347 Continuity Microplating using Image Processing
Authors: Ting-Chao Chen, Yean-Ren Hwang, Jing-Chie Lin
Abstract:
A real time image-guided electroplating system is proposed in this paper. Unlike previous electroplating systems, instead of using the intermittent mode to electroplate 500um long copper specimen, a CCD camera and a motion controller are used to adjust anode-cathode distance to obtain better results. Since the image of the gap distance is highly deteriorated due to complex chemical-electrical operation inside the electrolyte, to determine the gap distance, an image processing algorithm is developed and mainly based on the entropy and energy values. In addition, the color and incidence direction of light source are also discussed to help the image process in this paper. From the experiment results, the specimens created by the proposed system show better structure, better uniformity and better finishing surface compared to those by previous intermittent electroplating setup.Keywords: Electroplating, image guided, image process, light source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711346 Voltage Stability Enhancement Using Cat Swarm Optimization Algorithm
Authors: P. Suryakumari, P. Kantarao
Abstract:
Optimal Power Flow (OPF) problem in electrical power system is considered as a static, non-linear, multi-objective or a single objective optimization problem. This paper presents an algorithm for solving the voltage stability objective reactive power dispatch problem in a power system .The proposed approach employs cat swarm optimization algorithm for optimal settings of RPD control variables. Generator terminal voltages, reactive power generation of the capacitor banks and tap changing transformer setting are taken as the optimization variables. CSO algorithm is tested on standard IEEE 30 bus system and the results are compared with other methods to prove the effectiveness of the new algorithm. As a result, the proposed method is the best for solving optimal reactive power dispatch problem.
Keywords: RPD problem, voltage stability enhancement, CSO algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438345 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications
Authors: W. Schellong
Abstract:
Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.
Keywords: Crossover technologies, data management, energy analysis, energy efficiency, process control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961344 The Effect of a Graded Band Gap Window on the Performance of a Single Junction AlxGa1-xAs/GaAs Solar Cell
Authors: Morteza Fathipour, Atousa Elahidoost, Alireza Mojab, Vala Fathipour
Abstract:
We have modeled the effect of a graded band gap window on the performance of a single junction AlxGa1-xAs/GaAs solar cell. First, we study the electrical characteristics of a single junction AlxGa1-xAs/GaAs solar cell, by employing an optimized structure for this solar cell, we show that grading the band gap of the window can increase the conversion efficiency of the solar cell by about 1.5%, and can also improve the quantum efficiency of the solar cell especially at shorter wavelengths.Keywords: Conversion efficiency, Graded band gap window, Quantum efficiency, Single junction AlxGa1-xAs/GaAs solar cell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956343 Analytic on Various Grounding Configurations in Uniform Layer Soil
Authors: Mohd Shahriman B. Mohd Yunus, Mohd Hanif B. Jamaludin, Norain Bt. Bahror
Abstract:
The performance of an embedded grounding system is very important for the safe operation of electrical appliances and human beings. In principle, a safe grounding system has two objectives, which are to dissipate fault current without exceeding any operating and equipment limits and to ensure there is no risk of electric shock to humans in the vicinity of earthed facilities. The case studies in this paper present the calculating grounding resistance for multiple configurations of vertical and horizontally by using a simple and accurate formula. From the analytic calculated results, observed good/empirical relationship between the grounding resistance and length of the embedded grounding configurations. Moreover, the configurations of vertical and horizontal observed effectiveness of grounding resistance and good agreement on the reduction of grounding resistance values especially for vertical configuration.
Keywords: Grounding system, grounding resistance, soil resistivity, electrode geometry, configurations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502342 A Variable Incremental Conductance MPPT Algorithm Applied to Photovoltaic Water Pumping System
Authors: S. Abdourraziq, R. El Bachtiri
Abstract:
The use of solar energy as a source for pumping water is one of the promising areas in the photovoltaic (PV) application. The energy of photovoltaic pumping systems (PVPS) can be widely improved by employing an MPPT algorithm. This will lead consequently to maximize the electrical motor speed of the system. This paper presents a modified incremental conductance (IncCond) MPPT algorithm with direct control method applied to a standalone PV pumping system. The influence of the algorithm parameters on system behavior is investigated and compared with the traditional (INC) method. The studied system consists of a PV panel, a DC-DC boost converter, and a PMDC motor-pump. The simulation of the system by MATLAB-SIMULINK is carried out. Simulation results found are satisfactory.Keywords: Photovoltaic pumping system (PVPS), incremental conductance (INC), MPPT algorithm, boost converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253341 Dynamic Control Modeling and Simulation of a UPFC-SMES Compensator in Power Systems
Authors: K. Saravanan, R. Anita
Abstract:
Flexible AC Transmission Systems (FACTS) is granting a new group of advanced power electronic devices emerging for enhancement of the power system performance. Unified Power Flow Controller (UPFC) is a recent version of FACTS devices for power system applications. The back-up energy supply system incorporated with UPFC is providing a complete control of real and reactive power at the same time and hence is competent to improve the performance of an electrical power system. In this article, backup energy supply unit such as superconducting magnetic energy storage (SMES) is integrated with UPFC. In addition, comparative exploration of UPFC–battery, UPFC–UC and UPFC–SMES performance is evaluated through the vibrant simulation by using MATLAB/Simulink software.
Keywords: Power system, FACTS, UPFC, DC-DC chopper, battery, UC, SMES.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956340 Comparative study of the Genetic Algorithms and Hessians Method for Minimization of the Electric Power Production Cost
Authors: L. Abdelmalek, M. Zerikat, M. Rahli
Abstract:
In this paper, we present a comparative study of the genetic algorithms and Hessian-s methods for optimal research of the active powers in an electric network of power. The objective function which is the performance index of production of electrical energy is minimized by satisfying the constraints of the equality type and inequality type initially by the Hessian-s methods and in the second time by the genetic Algorithms. The results found by the application of AG for the minimization of the electric production costs of power are very encouraging. The algorithms seem to be an effective technique to solve a great number of problems and which are in constant evolution. Nevertheless it should be specified that the traditional binary representation used for the genetic algorithms creates problems of optimization of management of the large-sized networks with high numerical precision.Keywords: Genetic algorithm, Flow of optimum loadimpedances, Hessians method, Optimal distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290339 High-Intensity Nanosecond Pulsed Electric Field effects on Early Physiological Development in Arabidopsis thaliana
Authors: Wisuwat Songnuan, Phumin Kirawanich
Abstract:
The influences of pulsed electric fields on early physiological development in Arabidopsis thaliana were studied. Inside a 4-mm electroporation cuvette, pre-germination seeds were subjected to high-intensity, nanosecond electrical pulses generated using laboratory-assembled pulsed electric field system. The field strength was varied from 5 to 20 kV.cm-1 and the pulse width and the pulse number were maintained at 10 ns and 100, respectively, corresponding to the specific treatment energy from 300 J.kg-1 to 4.5 kJ.kg-1. Statistical analyses on the average leaf area 5 and 15 days following pulsed electric field treatment showed that the effects appear significant the second week after treatments with a maximum increase of 80% compared to the control (P < 0.01).Keywords: Arabidopsis thaliana, full-wave analysis, leaf area, high-intensity nanosecond pulsed electric fields
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192338 Potential of High Performance Ring Spinning Based on Superconducting Magnetic Bearing
Authors: M. Hossain, A. Abdkader, C. Cherif, A. Berger, M. Sparing, R. Hühne, L. Schultz, K. Nielsch
Abstract:
Due to the best quality of yarn and the flexibility of the machine, the ring spinning process is the most widely used spinning method for short staple yarn production. However, the productivity of these machines is still much lower in comparison to other spinning systems such as rotor or air-jet spinning process. The main reason for this limitation lies on the twisting mechanism of the ring spinning process. In the ring/traveler twisting system, each rotation of the traveler along with the ring inserts twist in the yarn. The rotation of the traveler at higher speed includes strong frictional forces, which in turn generates heat. Different ring/traveler systems concerning with its geometries, material combinations and coatings have already been implemented to solve the frictional problem. However, such developments can neither completely solve the frictional problem nor increase the productivity. The friction free superconducting magnetic bearing (SMB) system can be a right alternative replacing the existing ring/traveler system. The unique concept of SMB bearings is that they possess a self-stabilizing behavior, i.e. they remain fully passive without any necessity for expensive position sensing and control. Within the framework of a research project funded by German research foundation (DFG), suitable concepts of the SMB-system have been designed, developed, and integrated as a twisting device of ring spinning replacing the existing ring/traveler system. With the help of the developed mathematical model and experimental investigation, the physical limitations of this innovative twisting device in the spinning process have been determined. The interaction among the parameters of the spinning process and the superconducting twisting element has been further evaluated, which derives the concrete information regarding the new spinning process. Moreover, the influence of the implemented SMB twisting system on the yarn quality has been analyzed with respect to different process parameters. The presented work reveals the enormous potential of the innovative twisting mechanism, so that the productivity of the ring spinning process especially in case of thermoplastic materials can be at least doubled for the first time in a hundred years. The SMB ring spinning tester has also been presented in the international fair “International Textile Machinery Association (ITMA) 2015”.
Keywords: Ring spinning, superconducting magnetic bearing, yarn properties, productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942337 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle
Authors: Mahmoud Huleihil
Abstract:
In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.
Keywords: Magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715336 Highly Efficient Low Power Consumption Tracking Solar Cells for White LED-Based Lighting System
Authors: Theerawut Jinayim, Somchai Arunrungrasmi, Tanes Tanitteerapan, Narong Mungkung
Abstract:
Although White LED lighting systems powered by solar cells have presented for many years, they are not widely used in today application because of their cost and low energy conversion efficiency. The proposed system use the dc power generated by fixed solar cells module to energize White LED light sources that are operated by directly connected White LED with current limitation resistors, resulting in much more power consumption. This paper presents the use of white LED as a general lighting application powered by tracking solar cells module and using pulse to apply the electrical power to the White LED. These systems resulted in high efficiency power conversion, low power consumption, and long light of the white LED.Keywords: Efficiency, lighting, light-emitting diode, pulse, Solar, white LED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387335 Comparison of E-Waste Management in Switzerland and in Australia: A Qualitative Content Analysis
Authors: Md Tasbirul Islam, Pablo Dias, Nazmul Huda
Abstract:
E-waste/Waste electrical and electronic equipment (WEEE) is one of the fastest growing waste streams across the globe. This paper aims to compare the e-waste management system in Switzerland and Australia in terms of four features - legislative initiatives, disposal practice, collection and financial mechanisms. The qualitative content analysis is employed as a research method in the study. Data were collected from various published academic research papers, industry reports, and web sources. In addition, a questionnaire survey is conducted in Australia to understand the public awareness and opinions on the features. The results of the study provide valuable insights to policymakers in Australia developing better e-waste management system in conjunction with the public consensus, and the state-of-the-art operational strategies currently being practiced in Switzerland.Keywords: E-waste management, WEEE, awareness, pro-environmental behavior, Australia, Switzerland.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754334 Mine Production Index (MPI): New Method to Evaluate Effectiveness of Mining Machinery
Authors: Amol Lanke, Hadi Hoseinie, Behzad Ghodrati
Abstract:
OEE has been used in many industries as measure of performance. However due to limitations of original OEE, it has been modified by various researchers. OEE for mining application is special version of classic equation, carries these limitation over. In this paper it has been aimed to modify the OEE for mining application by introducing the weights to the elements of it and termed as Mine Production index (MPi). As a special application of new index MPishovel has been developed by authors. This can be used for evaluating the shovel effectiveness. Based on analysis, utilization followed by performance and availability were ranked in this order. To check the applicability of this index, a case study was done on four electrical and one hydraulic shovel in a Swedish mine. The results shows that MPishovel can evaluate production effectiveness of shovels and can determine effectiveness values in optimistic view compared to OEE. MPi with calculation not only give the effectiveness but also can predict which elements should be focused for improving the productivity.
Keywords: Mining, Overall equipment efficiency (OEE), Mine Production index, Shovels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4744333 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network
Authors: Jing Zhou, Steven Su, Aihuang Guo
Abstract:
COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.
Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3075332 The Improved Biofuel Cell for Electrical Power Generation from Wastewaters
Authors: M. S. Kilic, S. Korkut, B. Hazer
Abstract:
Newly synthesized Polypropylene-g-Polyethylene glycol polymer was first time used for a compartment-less enzymatic fuel cell. Working electrodes based on Polypropylene-g-Polyethylene glycol were operated as unmediated and mediated system (with ferrocene and gold/cobalt oxide nanoparticles). Glucose oxidase and bilirubin oxidase was selected as anodic and cathodic enzyme, respectively. Glucose was used as fuel in a single-compartment and membrane-less cell. Maximum power density was obtained as 0.65 nW cm-2, 65 nW cm-2 and 23500 nW cm-2 from the unmediated, ferrocene and gold/cobalt oxide modified polymeric film, respectively. Power density was calculated to be ~16000 nW cm-2 for undiluted wastewater sample with gold/cobalt oxide nanoparticles including system.
Keywords: Bilirubin oxidase, Enzymatic fuel cell, Glucose oxidase, Nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435331 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador
Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito
Abstract:
For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.Keywords: Hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744330 Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods
Authors: Ahmed Amine Hachicha, Chaouki Ghenai, Abdul Kadir Hamid
Abstract:
Temperature effect on the performance of a photovoltaic module is one of the main concerns that face this renewable energy, especially in hot arid region, e.g. United Arab Emirates. Overheating of the PV modules reduces the open circuit voltage and the efficiency of the modules dramatically. In this work, water-cooling is developed to enhance the performance of PV modules. Different scenarios are tested under UAE weather conditions: front, back and double cooling. A spraying system is used for the front cooling whether a direct contact water system is used for the back cooling. The experimental results are compared to non-cooling module and the performance of the PV module is determined for different situations. The experimental results show that the front cooling is more effective than the back cooling and may decrease the temperature of the PV module significantly.
Keywords: PV cooling, solar energy, cooling methods, electrical efficiency, temperature effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3553