Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31231
Continuity Microplating using Image Processing

Authors: Ting-Chao Chen, Yean-Ren Hwang, Jing-Chie Lin


A real time image-guided electroplating system is proposed in this paper. Unlike previous electroplating systems, instead of using the intermittent mode to electroplate 500um long copper specimen, a CCD camera and a motion controller are used to adjust anode-cathode distance to obtain better results. Since the image of the gap distance is highly deteriorated due to complex chemical-electrical operation inside the electrolyte, to determine the gap distance, an image processing algorithm is developed and mainly based on the entropy and energy values. In addition, the color and incidence direction of light source are also discussed to help the image process in this paper. From the experiment results, the specimens created by the proposed system show better structure, better uniformity and better finishing surface compared to those by previous intermittent electroplating setup.

Keywords: electroplating, image guided, image process, light source

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367


[1] J. C. Lin, T. K. Chang, J. H. Yang, J. H. Jeng, D. L. Lee, S. B. Jiang, "Fabrication of a micrometer Ni-Cu alloy column coupled with a Cu micro-column for thermal measurement", J. Micromech. Microeng. Vol. 19, 015030 (10pp), 2009.
[2] J. H. Yang, J. C. Lin, T. K. Chang, X. B. You, S. B. Jiang, "Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process", J. Micromech. Microeng., Vol. 19, 025015 (12pp), (2009).
[3] J. C. Lin, S. B. Jiang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang and J. H. Yang "Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating", J. Micromech. Microeng., Vol. 15, pp. 2405-2413, (2005).
[4] J. D. Madden, S. R. Lafontaine and I. W. Hunter, Proc. 6th Int. Symp. on Micro Machine and Human Science, pp. 77-81, (1995).
[5] J. D. Madden and I. W. Hunter, "Three-dimensional microfabrication by localized electrochemical deposition ", J. Microelectromech. Syst., pp. 524-532, (1996).
[6] E. M. El-Giar, U. Cairo and D. J. Thomson, "Localized electrochemical plating of interconnects for microelectronic", Proc. IEEE Conf. on Communications, Power and Computing, Vol. 22-3, pp. 327-332, (1997).
[7] E. M. El-Giar, R. A. Said, G. E. Bridges and D. J. Thomson, "Localized electrochemical deposition of copper microstructures", J. Electrochem. Soc., Vol. 147, pp.586-591, (2000).
[8] S. K. Seol, J. M. Yi, X. Jin, C. C. Kim, J. H. Je, W. L. Tsai, P. C. Hsu, Y. Hwu, C. H. Chen, L. W. Chang, G. Margaritondo, "Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition ", Electrochemical and Solid-State Letters, Vol. 7, No. 9, pp. C95-C97, (2004).
[9] S. K. Seol, A. R. Pyun, Y. Hwu, G. Margaritondo and J. H. Je, "Localized electrochemical deposition of copper monitored using real-time x-ray microradiography ", Adv. Funct. Mater., Vol. 15, pp. 934-937, (2005).
[10] R.C. Gonzalez and R.E. Woods, "Digital Image Processing ", Prentice-Hall, New Jersey, (2002).
[11] R.C. Gonzalez, R.E. Woods and S.L. Eddins, "Digital Image Processing using MATLAB ", Prentice-Hall, New Jersey, (2003).
[12] R.C. Gonzalez, R.E. Woods and S.L. Eddins, "Digital Image Processing using MATLAB ", 2nd edition, Gatesmark Publishing, United States, (2009).