Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32845
Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito


For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

Keywords: Hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699


[1] Banerjee P, et all” Designing and Simulation of Standalone Micro Grid for Rural area using Renewable Energy Resources”, IEEE Power Electronics (IICPE), 7th India International Conference,Patiala 2016.
[2] Icaza Alvarez, Daniel Orlando. Modelado, simulación y construcción de una turbina de viento DIAWIND-A2 como una nueva alternativa de generación eléctrica en áreas rurales de Ecuador. Killkana Técnica, 2018, vol. 1, no 3, p. 9-16.
[3] Peterseim. J. H, Hellwig. U, Tadros. A, White. “Hybridisation optimization of concentrating solar thermal and biomass power generation facilities”, Science direct Solar Energy vol. 99, pp. 203– 214, 2014.
[4] Pedram Asef, R. Bargallo Perpina, Bereket T. Habte, A. Babaeian, “An Alternative Organic growth through Acquisitions Investigation on wind Energy”, International conference –Alternative and renewable Energy Quest, AREQ 2017, Energy Procedia, 1-3 February 2017, Spain.
[5] Iftekhar Hussain, C.M. Duffy, A. & Norton, B. (2015), “A Comparative Technological Review of Hybrid CSP-Biomass CHP Systems in Europe”, International Conference on Sustainable Energy & Environmental Protection, Paisley, UK, 11-14 August.
[6] Department of Energy, “Potential Benefits of Distributed Generation and Rate Related Issues that may Impede their Expansion, A Study Pursuant to Section 1817 of the Energy Policy Act of 2005” 2007.
[7] Binayak, B., Shiva, R. P., Kyung-Tae L., Sung-Hoon A., “Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation”, International Journal of Precision engineering and Manufacturing-green Technology, Vol. 1, No 2, pp. 157-173, 2014.
[8] Kavitha Sirasani, S. Y. Kamdi, “Solar Hydro Hybrid Energy System Simulation” International Journal of Soft Computing and Engineering (IJSCE), Volume-2, Issue-6, pp. 500-503, January 2013.
[9] GARCÍA, M., "Modelado de Sistemas Fotovoltaicos Autónomos". En: Fundamentos, dimensionado y aplicaciones de la energía solar fotovoltaica. Madrid: Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 2006, p.13, ISBN: 9788478345144.
[10] WENHAM, S.; et al., "Applied Photovoltaics". 2nd. ed., London: Earthscan, 2007, 134 p., ISBN: 978-184407-401-3.
[11] Icaza D. Sami S., “Modeling, Simulation and Stability Analysis Using MATLAB of a Hybrid System Solar Panel and Wind Turbine in The Locality of Puntahacienda-Quingeo In Ecuador”, International Journal of Management and sustainability, 2018 vol. 7, No 1, pp 1-24 ISSN(e): 2306-0662. ISSN(p): 2306-9856. DOI: 10.18488/journal.11.2018.71.1.24.
[12] Ramazan Bayindir et al., “A Comprehensive Study on Microgrid Technology”, International Journal of Renowable Energy Research, Vol. 4, No. 4, 2014.
[13] Penyarat Chinda, Pascal Brault; The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling, International Journal of Hydrogen Energy, Volume 37, Issue 11, June 2012, Pages 9237–9248.
[14] Dustin McLarty, Jack Brouwer, Scott Samuelsen,Fuel cell–gas turbine hybrid system design part I: Steady state performance, Journal of Power Sources, Volume 257, 1 July 2014, Pages 412–420.
[15] Atideh Abbasi and Zhenhua Jiang, Design and analysis of a fuel cell/gas turbine hybrid power system , Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE.
[16] Yoshimasa Ando, Hiroyuki Oozawa, Masahiro Mihara, Hirroki Irie, Yasutaka Urashita, Takuo Ikegami, Demonstration of SOFC-Micro Gas Turbine (MGT), Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015).
[17] Icaza D., Modeling, simulation and construction of the D-ICAZA-A1 wind turbine destined for the rural areas of Ecuador. Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2017 IEEE PES. Quito 2017/12/4
[18] Fargali, H., M., Fahmy, F.H. and Hassan, M.A., “A Simulation Model for Predicting the Performance of PV/Wind- Powered Geothermal Space Heating System in Egypt”, The Online Journal on Electronics and Electrical Engineering (OJEEE), Vol.2, No.4, 2008.
[19] J. R. Howell, R. B. Bannerot, and G. C. Vliet ،Solar-Thermal Energy Systems: Analysis and Design, McGraw-Hill, Inc., New York, 1982.
[20] Colak I, Bayindir R, Fulli G, Tekin I, Demirtas K, Covrig CF. Smart grid opportunities and applications in Turkey. Renew Sustain Energy Rev 2014;33:344–52.
[21] Saha, N.C., Acharjee, S., Mollah, M.A.S., Rahman, K.T., and Rafi, F. H. M.,” Modeling and Performance Analysis of a Hybrid Power System”, Proc. of International Conference on Informatics Electronics & Vision (ICIEV), pp. 1-5, 2013.
[22] Mustafa, E., “Sizing and Simulation of PV-Wind Hybrid Power System”, International Journal of Photoenergy, Vol 2013, Article ID 217526, 10 pages, 2013.
[23] Colak I, Sagiroglu S, Fulli G, Yesilbudak M, Covrig CF. A survey on the critical issues in smart grid technologies. Renew Sustain Energy Rev 2014. submitted for publication.
[24] Icaza D, Córdova F, Toledo J, Carlos C, Lojano A, Modeling and simulation of a hybrid system solar panel and wind turbine in the locality of Molleturo in Ecuador. ICRERA 2017. San Diego CA USA pp 620-625. DOI: 10.1109/ICRERA.2017.8191134.
[25] Fadaeenejed, M, Radzi, M. A., AbKadir, M. Z. and Hizam, H.,” Assessment of Hybrid Renewable Power Sources for Rural Electrification in Malaysia”, Renewable and Sustainable Energy Reviews, Vol. 30, pp. 299- 305, 2013.
[26] F. Viola, P. Romano, R. Miceli, D. La Cascia, M. Longo, “Economical evaluation of ecological benefits of the demand side management”, ICRERA 2014, Milwaukee 19-22, 2014.
[27] Fabio Viola, Pietro Romano, Eleonora Riva Sanseverino, Rosario Miceli, Marzia Cardinale, Giuseppe Schettino “An economic study about the installation of PV plants reconfiguration systems in Italy”, pubblicato in 2014 International Conference on Renewable Energy Research and Application (ICRERA), DOI: 10.1109/ICRERA.2014.7016534.
[28] Sami, S. and Icaza, D. “Modeling, Simulation of Hybrid Solar Photovoltaic, Wind turbine and Hydraulic Power System”, IJEST, International Journal of Engineering Science and Technology, Volume 7, Issue 9, September 30, 2015.
[29] Whiteman, C. D, “Meteorología de Montañas: Fundamentos y Aplicaciones”, Oxford, Oxford University Press, 2000.
[30] Von Hippel, Eric. The sources of innovation. En Das Summa Summarum des Management. Gabler, 2007. p. 111-120.
[31] Icaza Álvarez, D. (2017). EJE 07-10 Sistemas de seguridad ciudadana por georeferenciación y geolocalización para zonas rurales del cantón Cuenca incorporados al SIS ECU 9-1-1 del Ecuador. Memorias Universidad Del Azuay, 1(XVI), 413 - 418. Recuperado a partir de