Comparative study of the Genetic Algorithms and Hessians Method for Minimization of the Electric Power Production Cost
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Comparative study of the Genetic Algorithms and Hessians Method for Minimization of the Electric Power Production Cost

Authors: L. Abdelmalek, M. Zerikat, M. Rahli

Abstract:

In this paper, we present a comparative study of the genetic algorithms and Hessian-s methods for optimal research of the active powers in an electric network of power. The objective function which is the performance index of production of electrical energy is minimized by satisfying the constraints of the equality type and inequality type initially by the Hessian-s methods and in the second time by the genetic Algorithms. The results found by the application of AG for the minimization of the electric production costs of power are very encouraging. The algorithms seem to be an effective technique to solve a great number of problems and which are in constant evolution. Nevertheless it should be specified that the traditional binary representation used for the genetic algorithms creates problems of optimization of management of the large-sized networks with high numerical precision.

Keywords: Genetic algorithm, Flow of optimum loadimpedances, Hessians method, Optimal distribution.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1086275

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289

References:


[1] Holland J.H., "Adaptation in natural and artificial system", Ann Arbor, The University of Michigan Press, 1975.
[2] D.E Goldberg, "Genetic Algorithm in Search Optimization and Machine Learning", Addison Wesley 1994.
[3] D.M Himmelblau, "Applied non linear programming Edition Mc Graw-Hill, 1972
[4] M. Minoux: "Programmation mathématique: Théorie et algorithmes Tome 1" Edition Dunod, 1983.
[5] J.C Dodu et P. Huard: "Méthodes quasi-newtoniennes sous contraintes non linéaires "Bulletin de la direction des études de recherche, Electricité de France, série C, N┬░2, 1988.
[6] M. Rahli et P. Pirotte, "Dispatching économique par une nouvelle méthode de programmation non linéaire ├á la répartition économique des puissances actives dans un réseau d-énergie électrique", CIMASI-96 Casablanca, Maroc, 14-16 Novembre 1996,pp325-330.
[7] T. Vallée et M. Yildizoglu, "Présentation des algorithmes génétiques et de leurs applications en économie. " 7 septembre 2001, v. 1.2
[8] Z. Michalewicz, et N.F. Attia, "Evolutionary optimization of constrained problems", Proceedings of the 3rd Annuel Conference on Evolutionary Programming, World Scientific, pp. 98-108.
[9] M. Rahli, "Contribution ├á l-Etude de la Répartition Optimale des Puissances Actives dans un Réseau d-Energie Electrique", thèse de doctorat, 06 janvier 1996, USTO. Algérie
[10] L. Abdelmalek, "Répartition Optimale des Puissances Actives et Réactives par les méthodes Hessiennes", CIMASI-2002, Casablanca 22- 25 Octobre 2002. Maroc.
[11] M. Rahli et P. Pirotte, "Optimal load flow using sequential unconstrained minimization technique SUMT method under power transmission losses minimization", Electric Power Research, 1999 Elsevier Science.
[12] R. Ouiddir et M. Rahli, "Dispatching Economique Actif dans un Réseau d-Energie Electrique par un Algorithme Génétique", 2nd International Conférence on Electrotechnics, 13-15 Novembre2000, ICEL2000, USTOran, Algérie.
[13] L. Drdi, Extrait du 1er chapitre de la thèse de doctorat INRS-ETE, 2005.