Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network
Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna
Abstract:
This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.
Keywords: Optimization, distributed generation, integration, slime mould algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648References:
M.-B. MEHDI, Injection de l’électricité produite par les énergies renouvelables dans le réseau électrique, Mémoire De Magister. Ecole Doctorale Université Abou Bekr Belkaïd, Tlemcen algerie: Ecole Doctorale Université Abou Bekr Belkaïd, Tlemcen algerie, 2009.[2] A. Das et L. Srivastava, « Optimal placement and sizing of distributed generation units for power loss reduction using Moth-Flame optimization algorithm », in 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kerala State,Kannur, India, juill. 2017, p. 1576‑1581. doi: 10.1109/ICICICT1.2017.8342805.
[3] F. F. Amigue, S. N. Essiane, S. P. Ngoffe, et A. T. Nelem, « Optimal Placement and Sizing of Distributed Energy Generation in an Electrical Network Using the Hybrid Algorithm of Bee Colonies and Newton Raphson », JPEE, vol. 08, no 06, p. 9‑21, 2020, doi: 10.4236/jpee.2020.86002.
[4] Z. Ullah, S. Wang, et J. Radosavljević, « A Novel Method Based on PPSO for Optimal Placement and Sizing of Distributed Generation », IEEJ Trans Elec Electron Eng, vol. 14, no 12, p. 1754‑1763, déc. 2019, doi: 10.1002/tee.23001.
[5] E. S. Ali, S. M. Abd Elazim, et A. Y. Abdelaziz, « Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations », Renewable Energy, vol. 101, p. 1311‑1324, févr. 2017, doi: 10.1016/j.renene.2016.09.023.
[6] S. Kansal, V. Kumar, et B. Tyagi, « Hybrid approach for optimal placement of multiple DGs of multiple types in distribution networks », International Journal of Electrical Power & Energy Systems, vol. 75, p. 226‑235, févr. 2016, doi: 10.1016/j.ijepes.2015.09.002.
[7] A. Bayat, A. Bagheri, et R. Noroozian, « Optimal siting and sizing of distributed generation accompanied by reconfiguration of distribution networks for maximum loss reduction by using a new UVDA-based heuristic method », International Journal of Electrical Power & Energy Systems, vol. 77, p. 360‑371, mai 2016, doi: 10.1016/j.ijepes.2015.11.039.
[8] M. Kefayat, A. Lashkar Ara, et S. A. Nabavi Niaki, « A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources », Energy Conversion and Management, vol. 92, p. 149‑161, mars 2015, doi: 10.1016/j.enconman.2014.12.037.
[9] V. R. Pandi, H. H. Zeineldin, et W. Xiao, « Determining Optimal Location and Size of Distributed Generation Resources Considering Harmonic and Protection Coordination Limits », IEEE Trans. Power Syst., vol. 28, no 2, p. 1245‑1254, mai 2013, doi: 10.1109/TPWRS.2012.2209687.
[10] A. K. Singh et S. K. Parida, « Selection of Load Buses for DG placement Based on Loss Reduction and Voltage Improvement Sensitivity », Proceedings of the 2011 International Conference on Power Engineering, Energy and Electrical Drives, Torremolinos (Málaga), Spain, mai 2011.
[11] A. Parizad, H. R. Baghaee, A. Yazdani, et G. B. Gharehpetian, « Optimal distribution systems reconfiguration for short circuit level reduction using PSO algorithm », in 2018 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, févr. 2018, p. 1‑6. doi: 10.1109/PECI.2018.8334976.
[12] M. H. Moradi et M. Abedinie, « A combination of Genetic Algorithm and Particle Swarm Optimization for optimal DG location and sizing in distribution systems », in 2010 Conference Proceedings IPEC, Singapore, Singapore, oct. 2010, p. 858‑862. doi: 10.1109/IPECON.2010.5697086.
[13] I. Pisica, C. Bulac, et M. Eremia, « Optimal Distributed Generation Location and Sizing Using Genetic Algorithms », in 2009 15th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil, nov. 2009, p. 1‑6. doi: 10.1109/ISAP.2009.5352936.
[14] H. Hedayati, S. A. Nabaviniaki, et A. Akbarimajd, « A Method for Placement of DG Units in Distribution Networks », IEEE Trans. Power Delivery, vol. 23, no 3, p. 1620‑1628, juill. 2008, doi: 10.1109/TPWRD.2007.916106.
[15] D. R. Monismith et B. E. Mayfield, « Slime Mold as a model for numerical optimization », in 2008 IEEE Swarm Intelligence Symposium, St. Louis, MO, USA, sept. 2008, p. 1‑8. doi: 10.1109/SIS.2008.4668295.
[16] S. Li, H. Chen, M. Wang, A. A. Heidari, et S. Mirjalili, « Slime mould algorithm: A new method for stochastic optimization », Future Generation Computer Systems, vol. 111, p. 300‑323, oct. 2020, doi: 10.1016/j.future.2020.03.055.
[17] N. C. Sahoo et K. Prasad, « A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems », Energy Conversion and Management, vol. 47, no 18‑19, p. 3288‑3306, nov. 2006, doi: 10.1016/j.enconman.2006.01.004.
[18] S. Satyanarayana, T. Ramana, S. Sivanagaraju, et G. K. Rao, « An Efficient Load Flow Solution for Radial Distribution Network Including Voltage Dependent Load Models », Electric Power Components and Systems, vol. 35, no 5, p. 539‑551, mai 2007, doi: 10.1080/15325000601078179.
[19] A. A. Hassan, F. H. Fahmy, A. E.-S. A. Nafeh, et M. A. Abu-elmagd, « Genetic single objective optimisation for sizing and allocation of renewable DG systems », International Journal of Sustainable Energy, vol. 36, no 6, p. 545‑562, juill. 2017, doi: 10.1080/14786451.2015.1053393.
[20] G. Trivedi, A. Markana, P. Bhatt, et V. Patel, « Optimal Sizing and Placement of Multiple Distributed Generators using Teaching Learning Based Optimization Algorithm in Radial Distributed Network », in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, avr. 2019, p. 958‑963. doi: 10.1109/CoDIT.2019.8820681.
[21] I. Kim et S. Xu, « Bus voltage control and optimization strategies for power flow analyses using Petri net approach », International Journal of Electrical Power & Energy Systems, vol. 112, p. 353‑361, nov. 2019, doi: 10.1016/j.ijepes.2019.05.009.
[22] K. Nadhir, D. Chabane, et B. Tarek, « Firefly algorithm for optimal allocation and sizing of Distributed Generation in radial distribution system for loss minimization », in 2013 International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia, mai 2013, p. 231‑235. doi: 10.1109/CoDIT.2013.6689549.
[23] W. S. Tan, M. Y. Hassan, M. S. Majid, et H. A. Rahman, « Allocation and sizing of DG using Cuckoo Search algorithm », in 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, déc. 2012, p. 133‑138. doi: 10.1109/PECon.2012.6450192.
[24] F. S. Abu-Mouti et M. E. El-Hawary, « Optimal Distributed Generation Allocation and Sizing in Distribution Systems via Artificial Bee Colony Algorithm », IEEE Trans. Power Delivery, vol. 26, no 4, p. 2090‑2101, oct. 2011, doi: 10.1109/TPWRD.2011.2158246. J. A. Martín García et A. J. Gil Mena, « Optimal distributed generation location and size using a modified teaching–learning based optimization algorithm », International Journal of Electrical Power & Energy Systems, vol. 50, p. 65‑75, sept. 2013, doi: 10.1016/j.ijepes.2013.02.023.
[25] T. N. Shukla, S. P. Singh, V. Srinivasarao, et K. B. Naik, « Optimal Sizing of Distributed Generation Placed on Radial Distribution Systems », Electric Power Components and Systems, vol. 38, no 3, p. 260‑274, janv. 2010, doi: 10.1080/15325000903273403.