Search results for: Monte Carlo methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4161

Search results for: Monte Carlo methods

4131 Optimal Maintenance and Improvement Policies in Water Distribution System: Markov Decision Process Approach

Authors: Jong Woo Kim, Go Bong Choi, Sang Hwan Son, Dae Shik Kim, Jung Chul Suh, Jong Min Lee

Abstract:

The Markov decision process (MDP) based methodology is implemented in order to establish the optimal schedule which minimizes the cost. Formulation of MDP problem is presented using the information about the current state of pipe, improvement cost, failure cost and pipe deterioration model. The objective function and detailed algorithm of dynamic programming (DP) are modified due to the difficulty of implementing the conventional DP approaches. The optimal schedule derived from suggested model is compared to several policies via Monte Carlo simulation. Validity of the solution and improvement in computational time are proved.

Keywords: Markov decision processes, Dynamic Programming, Monte Carlo simulation, Periodic replacement, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817
4130 Monte Carlo and Biophysics Analysis in a Criminal Trial

Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano

Abstract:

In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.

Keywords: Biophysical analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
4129 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: Dam, failure, limit-state, Monte Carlo simulation, reliability, probability, simulation, sliding, Taylor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
4128 A Novel Method Based on Monte Carlo for Simulation of Variable Resolution X-ray CT Scanner: Measurement of System Presampling MTF

Authors: H. Arabi, A.R. Kamali Asl

Abstract:

The purpose of this work is measurement of the system presampling MTF of a variable resolution x-ray (VRX) CT scanner. In this paper, we used the parameters of an actual VRX CT scanner for simulation and study of effect of different focal spot sizes on system presampling MTF by Monte Carlo method (GATE simulation software). Focal spot size of 0.6 mm limited the spatial resolution of the system to 5.5 cy/mm at incident angles of below 17º for cell#1. By focal spot size of 0.3 mm the spatial resolution increased up to 11 cy/mm and the limiting effect of focal spot size appeared at incident angles of below 9º. The focal spot size of 0.3 mm could improve the spatial resolution to some extent but because of magnification non-uniformity, there is a 10 cy/mm difference between spatial resolution of cell#1 and cell#256. The focal spot size of 0.1 mm acted as an ideal point source for this system. The spatial resolution increased to more than 35 cy/mm and at all incident angles the spatial resolution was a function of incident angle. By the way focal spot size of 0.1 mm minimized the effect of magnification nonuniformity.

Keywords: Focal spot, Spatial resolution, Monte Carlosimulation, Variable resolution x-ray (VRX) CT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
4127 The Effect of Nonnormality on CB-SEM and PLS-SEM Path Estimates

Authors: Z. Jannoo, B. W. Yap, N. Auchoybur, M. A. Lazim

Abstract:

The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are nonnormal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and nonnormality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model with one endogenous and four exogenous variables. Each latent variable has three indicators. For normal distributions, CB-SEM estimates were found to be inaccurate for small sample size while PLS-SEM could produce the path estimates. Meanwhile, for a larger sample size, CB-SEM estimates have lower variability compared to PLS-SEM. Under nonnormality, CB-SEM path estimates were inaccurate for small sample size. However, CB-SEM estimates are more accurate than those of PLS-SEM for sample size of 50 and above. The PLS-SEM estimates are not accurate unless sample size is very large.  

Keywords: CB-SEM, Monte Carlo simulation, Normality conditions, Nonnormality, PLS-SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5139
4126 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi

Abstract:

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

Keywords: Reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
4125 Monte Carlo Simulation of Copolymer Heterogeneity in Atom Transfer Radical Copolymerization of Styrene and N-Butyl Acrylate

Authors: Mohammad Najafi, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi, Vahid Haddadi-Asl

Abstract:

A high-performance Monte Carlo simulation, which simultaneously takes diffusion-controlled and chain-length-dependent bimolecular termination reactions into account, is developed to simulate atom transfer radical copolymerization of styrene and nbutyl acrylate. As expected, increasing initial feed fraction of styrene raises the fraction of styrene-styrene dyads (fAA) and reduces that of n-butyl acrylate dyads (fBB). The trend of variation in randomness parameter (fAB) during the copolymerization also varies significantly. Also, there is a drift in copolymer heterogeneity and the highest drift occurs in the initial feeds containing lower percentages of styrene, i.e. 20% and 5%.

Keywords: Atom Transfer Radical Copolymerization, MonteCarlo Simulation, Copolymer Heterogeneity, Styrene n-ButylAcrylate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
4124 Applying Gibbs Sampler for Multivariate Hierarchical Linear Model

Authors: Satoshi Usami

Abstract:

Among various HLM techniques, the Multivariate Hierarchical Linear Model (MHLM) is desirable to use, particularly when multivariate criterion variables are collected and the covariance structure has information valuable for data analysis. In order to reflect prior information or to obtain stable results when the sample size and the number of groups are not sufficiently large, the Bayes method has often been employed in hierarchical data analysis. In these cases, although the Markov Chain Monte Carlo (MCMC) method is a rather powerful tool for parameter estimation, Procedures regarding MCMC have not been formulated for MHLM. For this reason, this research presents concrete procedures for parameter estimation through the use of the Gibbs samplers. Lastly, several future topics for the use of MCMC approach for HLM is discussed.

Keywords: Gibbs sampler, Hierarchical Linear Model, Markov Chain Monte Carlo, Multivariate Hierarchical Linear Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
4123 Unit Root Tests Based On the Robust Estimator

Authors: Wararit Panichkitkosolkul

Abstract:

The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.

Keywords: Autoregressive, Ordinary least squares, Type I error, Power of the test, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
4122 Modeling the Transport of Charge Carriers in the Active Devices MESFET, Based of GaInP by the Monte Carlo Method

Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi

Abstract:

The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
4121 BER Performance of NLOS Underwater Wireless Optical Communication with Multiple Scattering

Authors: V. K. Jagadeesh, K. V. Naveen, P. Muthuchidambaranathan

Abstract:

Recently, there is a lot of interest in the field of under water optical wireless communication for short range because of its high bandwidth. But in most of the previous works line of sight propagation or single scattering of photons only considered. In practical case this is not applicable because of beam blockage in underwater and multiple scattering also occurred during the photons propagation through water. In this paper we consider a non-line of sight underwater wireless optical communication system with multiple scattering and examine the performance of the system using monte carlo simulation. The distribution scattering angle of photons are modeled by Henyey-Greenstein method. The average bit error rate is calculated using on-off keying modulation for different water types.

Keywords: Non line of sight under Water optical wireless communication, Henyey-Greenstein model, Multiple scattering, Monte-Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
4120 Screened Potential in a Reverse Monte Carlo (RMC) Simulation

Authors: M. Habchi, S. M. Mesli, M. Kotbi

Abstract:

A structural study of an aqueous electrolyte whose experimental results are available. It is a solution of LiCl-6H2O type at glassy state (120K) contrasted with pure water at room temperature by means of Partial Distribution Functions (PDF) issue from neutron scattering technique. Based on these partial functions, the Reverse Monte Carlo method (RMC) computes radial and angular correlation functions which allow exploring a number of structural features of the system. The obtained curves include some artifacts. To remedy this, we propose to introduce a screened potential as an additional constraint. Obtained results show a good matching between experimental and computed functions and a significant improvement in PDFs curves with potential constraint. It suggests an efficient fit of pair distribution functions curves.

Keywords: RMC simulation; Screened potential; partial and pair distribution functions; glassy and liquid state

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
4119 Adjusted LOLE and EENS Indices for the Consideration of Load Excess Transfer in Power Systems Adequacy Studies

Authors: F. Vallée, J-F. Toubeau, Z. De Grève, J. Lobry

Abstract:

When evaluating the capacity of a generation park to cover the load in transmission systems, traditional Loss of Load Expectation (LOLE) and Expected Energy not Served (EENS) indices can be used. If those indices allow computing the annual duration and severity of load non covering situations, they do not take into account the fact that the load excess is generally shifted from one penury state (hour or quarter of an hour) to the following one. In this paper, a sequential Monte Carlo framework is introduced in order to compute adjusted LOLE and EENS indices. Practically, those adapted indices permit to consider the effect of load excess transfer on the global adequacy of a generation park, providing thus a more accurate evaluation of this quantity.

Keywords: Expected Energy not Served, Loss of Load Expectation, Monte Carlo simulation, reliability, wind generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
4118 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: Stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
4117 Using the Monte Carlo Simulation to Predict the Assembly Yield

Authors: C. Chahin, M. C. Hsu, Y. H. Lin, C. Y. Huang

Abstract:

Electronics Products that achieve high levels of integrated communications, computing and entertainment, multimedia features in small, stylish and robust new form factors are winning in the market place. Due to the high costs that an industry may undergo and how a high yield is directly proportional to high profits, IC (Integrated Circuit) manufacturers struggle to maximize yield, but today-s customers demand miniaturization, low costs, high performance and excellent reliability making the yield maximization a never ending research of an enhanced assembly process. With factors such as minimum tolerances, tighter parameter variations a systematic approach is needed in order to predict the assembly process. In order to evaluate the quality of upcoming circuits, yield models are used which not only predict manufacturing costs but also provide vital information in order to ease the process of correction when the yields fall below expectations. For an IC manufacturer to obtain higher assembly yields all factors such as boards, placement, components, the material from which the components are made of and processes must be taken into consideration. Effective placement yield depends heavily on machine accuracy and the vision of the system which needs the ability to recognize the features on the board and component to place the device accurately on the pads and bumps of the PCB. There are currently two methods for accurate positioning, using the edge of the package and using solder ball locations also called footprints. The only assumption that a yield model makes is that all boards and devices are completely functional. This paper will focus on the Monte Carlo method which consists in a class of computational algorithms (information processed algorithms) which depends on repeated random samplings in order to compute the results. This method utilized in order to recreate the simulation of placement and assembly processes within a production line.

Keywords: Monte Carlo simulation, placement yield, PCBcharacterization, electronics assembly

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
4116 Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model

Authors: Susan J. Simmons, Fang Fang, Qijun Fang, Karl Ricanek

Abstract:

Quantitative trait loci (QTL) experiments have yielded important biological and biochemical information necessary for understanding the relationship between genetic markers and quantitative traits. For many years, most QTL algorithms only allowed one observation per genotype. Recently, there has been an increasing demand for QTL algorithms that can accommodate more than one observation per genotypic distribution. The Bayesian hierarchical model is very flexible and can easily incorporate this information into the model. Herein a methodology is presented that uses a Bayesian hierarchical model to capture the complexity of the data. Furthermore, the Markov chain Monte Carlo model composition (MC3) algorithm is used to search and identify important markers. An extensive simulation study illustrates that the method captures the true QTL, even under nonnormal noise and up to 6 QTL.

Keywords: Bayesian hierarchical model, Markov chain MonteCarlo model composition, quantitative trait loci.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
4115 Wind Fragility for Honeycomb Roof Cladding Panels Using Screw Pull-Out Capacity

Authors: Viriyavudh Sim, Woo Young Jung

Abstract:

The failure of roof cladding mostly occurs due to the failing of the connection between claddings and purlins, which is the pull-out of the screw connecting the two parts when the pull-out load, i.e. typhoon, is higher than the resistance of the connection screw. As typhoon disasters in Korea are constantly on the rise, probability risk assessment (PRA) has become a vital tool to evaluate the performance of civil structures. In this study, we attempted to determine the fragility of roof cladding with the screw connection. Experimental study was performed to evaluate the pull-out resistance of screw joints between honeycomb panels and back frames. Subsequently, by means of Monte Carlo Simulation method, probability of failure for these types of roof cladding was determined. The results that the failure of roof cladding was depends on their location on the roof, for example, the edge most panel has the highest probability of failure.

Keywords: Monte Carlo Simulation, roof cladding, screw pull-out strength, wind fragility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
4114 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame

Authors: Seong Do Kim, Woo Young Jung

Abstract:

Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.

Keywords: Aluminum frame soundproofing wall, Monte Carlo Simulation, numerical simulation, wind fragility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
4113 Continuous Wave Interference Effects on Global Position System Signal Quality

Authors: Fang Ye, Han Yu, Yibing Li

Abstract:

Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.

Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
4112 Confidence Intervals for the Coefficients of Variation with Bounded Parameters

Authors: Jeerapa Sappakitkamjorn, Sa-aat Niwitpong

Abstract:

In many practical applications in various areas, such as engineering, science and social science, it is known that there exist bounds on the values of unknown parameters. For example, values of some measurements for controlling machines in an industrial process, weight or height of subjects, blood pressures of patients and retirement ages of public servants. When interval estimation is considered in a situation where the parameter to be estimated is bounded, it has been argued that the classical Neyman procedure for setting confidence intervals is unsatisfactory. This is due to the fact that the information regarding the restriction is simply ignored. It is, therefore, of significant interest to construct confidence intervals for the parameters that include the additional information on parameter values being bounded to enhance the accuracy of the interval estimation. Therefore in this paper, we propose a new confidence interval for the coefficient of variance where the population mean and standard deviation are bounded. The proposed interval is evaluated in terms of coverage probability and expected length via Monte Carlo simulation.  

Keywords: Bounded parameters, coefficient of variation, confidence interval, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4227
4111 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology

Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian

Abstract:

Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.

Keywords: Energy in Buildings, Hardware in Loop, Modelica (Dymola), Monte Carlo Simulation, Uncertainty Propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
4110 Fragility Analysis of Weir Structure Subjected to Flooding Water Damage

Authors: Oh Hyeon Jeon, WooYoung Jung

Abstract:

In this study, seepage analysis was performed by the level difference between upstream and downstream of weir structure for safety evaluation of weir structure against flooding. Monte Carlo Simulation method was employed by considering the probability distribution of the adjacent ground parameter, i.e., permeability coefficient of weir structure. Moreover, by using a commercially available finite element program (ABAQUS), modeling of the weir structure is carried out. Based on this model, the characteristic of water seepage during flooding was determined at each water level with consideration of the uncertainty of their corresponding permeability coefficient. Subsequently, fragility function could be constructed based on this response from numerical analysis; this fragility function results could be used to determine the weakness of weir structure subjected to flooding disaster. They can also be used as a reference data that can comprehensively predict the probability of failur,e and the degree of damage of a weir structure.

Keywords: Weir structure, seepage, flood disaster fragility, probabilistic risk assessment, Monte-Carlo Simulation, permeability coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
4109 A Framework of Monte Carlo Simulation for Examining the Uncertainty-Investment Relationship

Authors: George Yungchih Wang

Abstract:

This paper argues that increased uncertainty, in certain situations, may actually encourage investment. Since earlier studies mostly base their arguments on the assumption of geometric Brownian motion, the study extends the assumption to alternative stochastic processes, such as mixed diffusion-jump, mean-reverting process, and jump amplitude process. A general approach of Monte Carlo simulation is developed to derive optimal investment trigger for the situation that the closed-form solution could not be readily obtained under the assumption of alternative process. The main finding is that the overall effect of uncertainty on investment is interpreted by the probability of investing, and the relationship appears to be an invested U-shaped curve between uncertainty and investment. The implication is that uncertainty does not always discourage investment even under several sources of uncertainty. Furthermore, high-risk projects are not always dominated by low-risk projects because the high-risk projects may have a positive realization effect on encouraging investment.

Keywords: real options, geometric Brownian motion, mixeddiffusion-jump process, mean- reverting process, jump amplitudeprocess

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
4108 Dynamical Characteristics of Interaction between Water Droplet and Aerosol Particle in Dedusting Technology

Authors: Ding Jue, Li Jiahua, Lei Zhidi, Weng Peifen, Li Xiaowei

Abstract:

With the rapid development of national modern industry, people begin to pay attention to environmental pollution and harm caused by industrial dust. Based on above, a numerical study on the dedusting technology of industrial environment was conducted. The dynamic models of multicomponent particles collision and coagulation, breakage and deposition are developed, and the interaction of water droplet and aerosol particle in 2-Dimension flow field was researched by Eulerian-Lagrangian method and Multi-Monte Carlo method. The effects of the droplet scale, movement speed of droplet and the flow field structure on scavenging efficiency were analyzed. The results show that under the certain condition, 30μm of droplet has the best scavenging efficiency. At the initial speed 1m/s of droplets, droplets and aerosol particles have more time to interact, so it has a better scavenging efficiency for the particle.

Keywords: Water droplet, aerosol particle, collision and coagulation, multi-Monte Carlo method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
4107 Non-equilibrium Statistical Mechanics of a Driven Lattice Gas Model: Probability Function, FDT-violation, and Monte Carlo Simulations

Authors: K. Sudprasert, M. Precharattana, N. Nuttavut, D. Triampo, B. Pattanasiri, Y. Lenbury, W. Triampo

Abstract:

The study of non-equilibrium systems has attracted increasing interest in recent years, mainly due to the lack of theoretical frameworks, unlike their equilibrium counterparts. Studying the steady state and/or simple systems is thus one of the main interests. Hence in this work we have focused our attention on the driven lattice gas model (DLG model) consisting of interacting particles subject to an external field E. The dynamics of the system are given by hopping of particles to nearby empty sites with rates biased for jumps in the direction of E. Having used small two dimensional systems of DLG model, the stochastic properties at nonequilibrium steady state were analytically studied. To understand the non-equilibrium phenomena, we have applied the analytic approach via master equation to calculate probability function and analyze violation of detailed balance in term of the fluctuation-dissipation theorem. Monte Carlo simulations have been performed to validate the analytic results.

Keywords: Non-equilibrium, lattice gas, stochastic process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
4106 Probabilistic Model Development for Project Performance Forecasting

Authors: Milad Eghtedari Naeini, Gholamreza Heravi

Abstract:

In this paper, based on the past project cost and time performance, a model for forecasting project cost performance is developed. This study presents a probabilistic project control concept to assure an acceptable forecast of project cost performance. In this concept project activities are classified into sub-groups entitled control accounts. Then obtain the Stochastic S-Curve (SS-Curve), for each sub-group and the project SS-Curve is obtained by summing sub-groups- SS-Curves. In this model, project cost uncertainties are considered through Beta distribution functions of the project activities costs required to complete the project at every selected time sections through project accomplishment, which are extracted from a variety of sources. Based on this model, after a percentage of the project progress, the project performance is measured via Earned Value Management to adjust the primary cost probability distribution functions. Then, accordingly the future project cost performance is predicted by using the Monte-Carlo simulation method.

Keywords: Monte Carlo method, Probabilistic model, Project forecasting, Stochastic S-curve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
4105 Evaluation of Wind Fragility for Set Anchor Used in Sign Structure in Korea

Authors: WooYoung Jung, Buntheng Chhorn, Min-Gi Kim

Abstract:

Recently, damage to domestic facilities by strong winds and typhoons are growing. Therefore, this study focused on sign structure among various vulnerable facilities. The evaluation of the wind fragility was carried out considering the destruction of the anchor, which is one of the various failure modes of the sign structure. The performance evaluation of the anchor was carried out to derive the wind fragility. Two parameters were set and four anchor types were selected to perform the pull-out and shear tests. The resistance capacity was estimated based on the experimental results. Wind loads were estimated using Monte Carlo simulation method. Based on these results, we derived the wind fragility according to anchor type and wind exposure category. Finally, the evaluation of the wind fragility was performed according to the experimental parameters such as anchor length and anchor diameter. This study shows that the depth of anchor was more significant for the safety of structure compare to diameter of anchor.

Keywords: Sign structure, wind fragility, set anchor, pull-out test, shear test, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
4104 Mecano-Reliability Approach Applied to a Water Storage Tank Placed on Ground

Authors: Amar Aliche, Hocine Hammoum, Karima Bouzelha, Arezki Ben Abderrahmane

Abstract:

Traditionally, the dimensioning of storage tanks is conducted with a deterministic approach based on partial coefficients of safety. These coefficients are applied to take into account the uncertainties related to hazards on properties of materials used and applied loads. However, the use of these safety factors in the design process does not assure an optimal and reliable solution and can sometimes lead to a lack of robustness of the structure. The reliability theory based on a probabilistic formulation of constructions safety can respond in an adapted manner. It allows constructing a modelling in which uncertain data are represented by random variables, and therefore allows a better appreciation of safety margins with confidence indicators. The work presented in this paper consists of a mecano-reliability analysis of a concrete storage tank placed on ground. The classical method of Monte Carlo simulation is used to evaluate the failure probability of concrete tank by considering the seismic acceleration as random variable.

Keywords: Reliability approach, storage tanks, Monte Carlo simulation, seismic acceleration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
4103 Robust Camera Calibration using Discrete Optimization

Authors: Stephan Rupp, Matthias Elter, Michael Breitung, Walter Zink, Christian Küblbeck

Abstract:

Camera calibration is an indispensable step for augmented reality or image guided applications where quantitative information should be derived from the images. Usually, a camera calibration is obtained by taking images of a special calibration object and extracting the image coordinates of projected calibration marks enabling the calculation of the projection from the 3d world coordinates to the 2d image coordinates. Thus such a procedure exhibits typical steps, including feature point localization in the acquired images, camera model fitting, correction of distortion introduced by the optics and finally an optimization of the model-s parameters. In this paper we propose to extend this list by further step concerning the identification of the optimal subset of images yielding the smallest overall calibration error. For this, we present a Monte Carlo based algorithm along with a deterministic extension that automatically determines the images yielding an optimal calibration. Finally, we present results proving that the calibration can be significantly improved by automated image selection.

Keywords: Camera Calibration, Discrete Optimization, Monte Carlo Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
4102 An Anatomically-Based Model of the Nerves in the Human Foot

Authors: Muhammad Zeeshan UlHaque, Peng Du, Leo K. Cheng, Marc D. Jacobs

Abstract:

Sensory nerves in the foot play an important part in the diagnosis of various neuropathydisorders, especially in diabetes mellitus.However, a detailed description of the anatomical distribution of the nerves is currently lacking. A computationalmodel of the afferent nerves inthe foot may bea useful tool for the study of diabetic neuropathy. In this study, we present the development of an anatomically-based model of various major sensory nerves of the sole and dorsal sidesof the foot. In addition, we presentan algorithm for generating synthetic somatosensory nerve networks in the big-toe region of a right foot model. The algorithm was based on a modified version of the Monte Carlo algorithm, with the capability of being able to vary the intra-epidermal nerve fiber density in differentregionsof the foot model. Preliminary results from the combinedmodel show the realistic anatomical structure of the major nerves as well as the smaller somatosensory nerves of the foot. The model may now be developed to investigate the functional outcomes of structural neuropathyindiabetic patients.

Keywords: Diabetic neuropathy, Finite element modeling, Monte Carlo Algorithm, Somatosensory nerve networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335