Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32127
Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model

Authors: Susan J. Simmons, Fang Fang, Qijun Fang, Karl Ricanek


Quantitative trait loci (QTL) experiments have yielded important biological and biochemical information necessary for understanding the relationship between genetic markers and quantitative traits. For many years, most QTL algorithms only allowed one observation per genotype. Recently, there has been an increasing demand for QTL algorithms that can accommodate more than one observation per genotypic distribution. The Bayesian hierarchical model is very flexible and can easily incorporate this information into the model. Herein a methodology is presented that uses a Bayesian hierarchical model to capture the complexity of the data. Furthermore, the Markov chain Monte Carlo model composition (MC3) algorithm is used to search and identify important markers. An extensive simulation study illustrates that the method captures the true QTL, even under nonnormal noise and up to 6 QTL.

Keywords: Bayesian hierarchical model, Markov chain MonteCarlo model composition, quantitative trait loci.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797


[1] Lynch M., Walsh, B., Genetics and Analysis of Quantitative Traits, Sinauer Associates Inc., Sunderland, MA, 1997.
[2] Jing-hu Z., Yuan-zhu X., Bo Z., Ming-gang L., Feng-e L., Jia-lian L.,"Detection of Quantitative Trait Loci Associated with Live Measurement Traits in Pigs", Agricultural Sciences in China 6 (7), 2007, pp. 863-868.
[3] Buitenhuis, A.J., Rodenburg, T.B., Siwek, M., Cornelissen, S.J.B., Nieuwland, M.G.B., Crooijmans, R.P., Groenen, M.A., Koene, P. Bovenhuis, H., van der Poel, J.J., "Quantitative trait loci for behavioural traits in chickens", Livestock Production Science 93 (1), 2005, pp. 95- 103.
[4] Séne, M., Causse, M., Damerval, C., Thévenot, C., Prioul, J.L., "Quantitative trait loci affecting amylose, amylopectin and starch content in maize recombinant inbred lines", Plant Physiology and Biochemistry 3 (6), 2000, pp. 459-472.
[5] Lander E.S,. Botstein D.., "Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps", Genetics 121, 1989, pp 185-199.
[6] Luo Z.W., Kearsey M.J., "Interval mapping of quantitative trait loci in an F2 population", Heredity 69, 1992, pp 236¨C242.
[7] Jansen R.C.,"Interval mapping of multiple quantitative trait loci", Genetics 135, 1993, pp. 205-211.
[8] Luo Z.W., Williams J.A. "Estimation of genetic parameters using linkage between a marker gene and a locus underlying a quantitative character in F2 populations", Heredity 70, 1993, pp. 245-253.
[9] Jansen R.C., Stam P., "High resolution of quantitative traits into multiple loci via interval mapping", Genetics 136, 1994, pp. 1447-1455.
[10] Zeng Z.B., "Precision mapping of quantitative trait loci", Genetics 136, 1994, pp. 1457-1468.
[11] Jiang C., Zeng Z.B., "Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines", Genetica 101, 1997, pp. 47-58.
[12] Gao H., Yang R., "Composite interval mapping of QTL for dynamic traits", Chin Sci Bull 51, 2006, pp.: 1857-1862.
[13] Haley C., Knott S., "A simple regression method for mapping quantitative trait loci in line crosses using flanking markers-, Heredity 69, 1992,:pp. 315-324.
[14] Jansen R.C. "A general Monte Carlo method for mapping multiple quantitative trait loci", Genetics 142, 1996, pp. 305-311.
[15] Liu J., Mercer J.M., Stam L.F., Gibson G.C., Zeng Z.B., Laurie C.C., "Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana", Genetics 142, 1996, pp. 1129-1145.
[16] Kao C.H., Zeng Z.B. "General formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm", Biometrics 53, 1997, pp. 653-665.
[17] Weber K., Eisman R., Higgins S., Kuhl L., Patty A., Sparks J., Zeng Z.B. "An analysis of polygenes affecting wing shape on chromosome three in Drosophila melanogaster", Genetics 153, 1999, pp. 773-786.
[18] Kao C.H., "On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci", Genetics 156, 2000, pp. 855-865.
[19] Zeng Z.B., Liu J., Stam L.F., Kao C.H., Mercer J.M., Laurie C.C., "Genetic architecture of a morphological shape difference between two drosophila species", Genetics 154, 2000, pp. 299-310.
[20] Zeng Z.B., Wang T., Zou W., "Modeling quantitative trait loci and interpretation of models", Genetics 169, 2005, pp. 1711-1725.
[21] Satagopan J.M., Yandell B.S., Newton M.A., Osborn T.C., "Markov chain Monte Carlo approach to detect polygene loci for complex traits", Genetics 144, 1996, pp. 805-816.
[22] Sillanpaa M., Arjas E., (1998) "Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data", Genetics 148, 1998, pp. 1373-1388.
[23] Sen S., Churchill G.A.,"A statistical framework for quantitative trait mapping", Genetics 159, 2001, pp. 371-387.
[24] Yandell B.S., Mehta T., Banerjee S., Shriner D., Venkataraman R., Moon J.Y., Neely W.W., Wu H., von Smith R., Yi N., "R/qtlbim: QTL with Bayesian interval mapping in experimental crosses", Bioinformatics 23, 2007, pp. 641-643.
[25] Ball R.D., "Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion", Genetics 159, 2001, pp. 1351-1364.
[26] Broman, K. W., Speed, T. P., "A model selection approach for the identification of quantitative trait loci in experimental crosses", Journal of the Royal Statistical Society, Series B: Statistical Methodology 64, 2002, pp. 641-656
[27] Sillanpaa M.J., Corander J., "Model choice in gene mapping: what and why", Trends in Genetics 18,2002, pp. 301-307.
[28] Boone, E.L., Simmons, S.J., Ye, K., Stapleton, A.E., "Analyzing Quantitative Trait Loci for the Arabidopsis thaliana using Markov Chain Monte Carlo Model Composition with restricted and unrestricted model spaces", Statistical Methodology 3 (1), 2006, pp. 69-78.
[29] Loudet, Chaillou, Camilleri, Bouchez, Vedele, "Bay-0 x Shahdara recombinant inbred lines population: a powerful tool for the genetic dissection of complex traits in Arabidopsis", Theoretical and Applied Genetics 104 (6-7), 2002, pp. 1173-1184.