Search results for: confidence interval
440 Confidence Interval for the Inverse of a Normal Mean with a Known Coefficient of Variation
Authors: Arunee Wongkha, Suparat Niwitpong, Sa-aat Niwitpong
Abstract:
In this paper, we propose two new confidence intervals for the inverse of a normal mean with a known coefficient of variation. One of new confidence intervals for the inverse of a normal mean with a known coefficient of variation is constructed based on the pivotal statistic Z where Z is a standard normal distribution and another confidence interval is constructed based on the generalized confidence interval, presented by Weerahandi. We examine the performance of these confidence intervals in terms of coverage probabilities and average lengths via Monte Carlo simulation.
Keywords: The inverse of a normal mean, confidence interval, generalized confidence intervals, known coefficient of variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578439 Approximate Confidence Interval for Effect Size Base on Bootstrap Resampling Method
Authors: S. Phanyaem
Abstract:
This paper presents the confidence intervals for the effect size base on bootstrap resampling method. The meta-analytic confidence interval for effect size is proposed that are easy to compute. A Monte Carlo simulation study was conducted to compare the performance of the proposed confidence intervals with the existing confidence intervals. The best confidence interval method will have a coverage probability close to 0.95. Simulation results have shown that our proposed confidence intervals perform well in terms of coverage probability and expected length.Keywords: Effect size, confidence interval, Bootstrap Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142438 Confidence Intervals for the Difference of Two Normal Population Variances
Authors: Suparat Niwitpong
Abstract:
Motivated by the recent work of Herbert, Hayen, Macaskill and Walter [Interval estimation for the difference of two independent variances. Communications in Statistics, Simulation and Computation, 40: 744-758, 2011.], we investigate, in this paper, new confidence intervals for the difference between two normal population variances based on the generalized confidence interval of Weerahandi [Generalized Confidence Intervals. Journal of the American Statistical Association, 88(423): 899-905, 1993.] and the closed form method of variance estimation of Zou, Huo and Taleban [Simple confidence intervals for lognormal means and their differences with environmental applications. Environmetrics 20: 172-180, 2009]. Monte Carlo simulation results indicate that our proposed confidence intervals give a better coverage probability than that of the existing confidence interval. Also two new confidence intervals perform similarly based on their coverage probabilities and their average length widths.
Keywords: Confidence interval, generalized confidence interval, the closed form method of variance estimation, variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772437 On Simple Confidence Intervals for the Normal Mean with Known Coefficient of Variation
Authors: Suparat Niwitpong, Sa-aat Niwitpong
Abstract:
In this paper we proposed the new confidence interval for the normal population mean with known coefficient of variation. In practice, this situation occurs normally in environment and agriculture sciences where we know the standard deviation is proportional to the mean. As a result, the coefficient of variation of is known. We propose the new confidence interval based on the recent work of Khan [3] and this new confidence interval will compare with our previous work, see, e.g. Niwitpong [5]. We derive analytic expressions for the coverage probability and the expected length of each confidence interval. A numerical method will be used to assess the performance of these intervals based on their expected lengths.
Keywords: confidence interval, coverage probability, expected length, known coefficient of variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753436 Coverage Probability of Confidence Intervals for the Normal Mean and Variance with Restricted Parameter Space
Authors: Sa-aat Niwitpong
Abstract:
Recent articles have addressed the problem to construct the confidence intervals for the mean of a normal distribution where the parameter space is restricted, see for example Wang [Confidence intervals for the mean of a normal distribution with restricted parameter space. Journal of Statistical Computation and Simulation, Vol. 78, No. 9, 2008, 829–841.], we derived, in this paper, analytic expressions of the coverage probability and the expected length of confidence interval for the normal mean when the whole parameter space is bounded. We also construct the confidence interval for the normal variance with restricted parameter for the first time and its coverage probability and expected length are also mathematically derived. As a result, one can use these criteria to assess the confidence interval for the normal mean and variance when the parameter space is restricted without the back up from simulation experiments.
Keywords: Confidence interval, coverage probability, expected length, restricted parameter space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607435 Confidence Intervals for the Coefficients of Variation with Bounded Parameters
Authors: Jeerapa Sappakitkamjorn, Sa-aat Niwitpong
Abstract:
In many practical applications in various areas, such as engineering, science and social science, it is known that there exist bounds on the values of unknown parameters. For example, values of some measurements for controlling machines in an industrial process, weight or height of subjects, blood pressures of patients and retirement ages of public servants. When interval estimation is considered in a situation where the parameter to be estimated is bounded, it has been argued that the classical Neyman procedure for setting confidence intervals is unsatisfactory. This is due to the fact that the information regarding the restriction is simply ignored. It is, therefore, of significant interest to construct confidence intervals for the parameters that include the additional information on parameter values being bounded to enhance the accuracy of the interval estimation. Therefore in this paper, we propose a new confidence interval for the coefficient of variance where the population mean and standard deviation are bounded. The proposed interval is evaluated in terms of coverage probability and expected length via Monte Carlo simulation.
Keywords: Bounded parameters, coefficient of variation, confidence interval, Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4211434 Confidence Intervals for the Normal Mean with Known Coefficient of Variation
Authors: Suparat Niwitpong
Abstract:
In this paper we proposed two new confidence intervals for the normal population mean with known coefficient of variation. This situation occurs normally in environment and agriculture experiments where the scientist knows the coefficient of variation of their experiments. We propose two new confidence intervals for this problem based on the recent work of Searls [5] and the new method proposed in this paper for the first time. We derive analytic expressions for the coverage probability and the expected length of each confidence interval. Monte Carlo simulation will be used to assess the performance of these intervals based on their expected lengths.
Keywords: confidence interval, coverage probability, expected length, known coefficient of variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643433 Comparing Interval Estimators for Reliability in a Dependent Set-up
Authors: Alessandro Barbiero
Abstract:
In this paper some procedures for building confidence intervals for the reliability in stress-strength models are discussed and empirically compared. The particular case of a bivariate normal setup is considered. The confidence intervals suggested are obtained employing approximations or asymptotic properties of maximum likelihood estimators. The coverage and the precision of these intervals are empirically checked through a simulation study. An application to real paired data is also provided.
Keywords: Approximate estimators, asymptotic theory, confidence interval, Monte Carlo simulations, stress-strength, variance estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470432 An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach
Authors: Kriangkrai Maneerat, Chutima Prommak
Abstract:
Indoor wireless localization systems have played an important role to enhance context-aware services. Determining the position of mobile objects in complex indoor environments, such as those in multi-floor buildings, is very challenging problems. This paper presents an effective floor estimation algorithm, which can accurately determine the floor where mobile objects located. The proposed algorithm is based on the confidence interval of the summation of online Received Signal Strength (RSS) obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSN).We compare the performance of the proposed algorithm with those of other floor estimation algorithms in literature by conducting a real implementation of WSN in our facility. The experimental results and analysis showed that the proposed floor estimation algorithm outperformed the other algorithms and provided highest percentage of floor accuracy up to 100% with 95-percent confidence interval.
Keywords: Floor estimation algorithm, floor determination, multi-floor building, indoor wireless systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3200431 On Some Properties of Interval Matrices
Authors: K. Ganesan
Abstract:
By using a new set of arithmetic operations on interval numbers, we discuss some arithmetic properties of interval matrices which intern helps us to compute the powers of interval matrices and to solve the system of interval linear equations.Keywords: Interval arithmetic, Interval matrix, linear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046430 Comparison of Two Interval Models for Interval-Valued Differential Evolution
Authors: Hidehiko Okada
Abstract:
The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks.
Keywords: Evolutionary algorithms, differential evolution, neural network, neuroevolution, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658429 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes
Authors: V. Churkin, M. Lopatin
Abstract:
The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second – 95,3%.Keywords: Bass model, generalized Bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877428 Reliability Analysis of k-out-of-n : G System Using Triangular Intuitionistic Fuzzy Numbers
Authors: Tanuj Kumar, Rakesh Kumar Bajaj
Abstract:
In the present paper, we analyze the vague reliability of k-out-of-n : G system (particularly, series and parallel system) with independent and non-identically distributed components, where the reliability of the components are unknown. The reliability of each component has been estimated using statistical confidence interval approach. Then we converted these statistical confidence interval into triangular intuitionistic fuzzy numbers. Based on these triangular intuitionistic fuzzy numbers, the reliability of the k-out-of-n : G system has been calculated. Further, in order to implement the proposed methodology and to analyze the results of k-out-of-n : G system, a numerical example has been provided.
Keywords: Vague set, vague reliability, triangular intuitionistic fuzzy number, k-out-of-n : G system, series and parallel system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976427 The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination
Authors: O. Abiodun Adeyinka, B. Adeyemo Adesesan
Abstract:
The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.Keywords: Logistic Regression LoR, Kernel Density Estimator KDE, Handwriting, Confidence Interval, Repeatability, Reproducibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 462426 Approximations to the Distribution of the Sample Correlation Coefficient
Authors: John N. Haddad, Serge B. Provost
Abstract:
Given a bivariate normal sample of correlated variables, (Xi, Yi), i = 1, . . . , n, an alternative estimator of Pearson’s correlation coefficient is obtained in terms of the ranges, |Xi − Yi|. An approximate confidence interval for ρX,Y is then derived, and a simulation study reveals that the resulting coverage probabilities are in close agreement with the set confidence levels. As well, a new approximant is provided for the density function of R, the sample correlation coefficient. A mixture involving the proposed approximate density of R, denoted by hR(r), and a density function determined from a known approximation due to R. A. Fisher is shown to accurately approximate the distribution of R. Finally, nearly exact density approximants are obtained on adjusting hR(r) by a 7th degree polynomial.Keywords: Sample correlation coefficient, density approximation, confidence intervals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259425 Computational Aspects of Regression Analysis of Interval Data
Authors: Michal Cerny
Abstract:
We consider linear regression models where both input data (the values of independent variables) and output data (the observations of the dependent variable) are interval-censored. We introduce a possibilistic generalization of the least squares estimator, so called OLS-set for the interval model. This set captures the impact of the loss of information on the OLS estimator caused by interval censoring and provides a tool for quantification of this effect. We study complexity-theoretic properties of the OLS-set. We also deal with restricted versions of the general interval linear regression model, in particular the crisp input – interval output model. We give an argument that natural descriptions of the OLS-set in the crisp input – interval output cannot be computed in polynomial time. Then we derive easily computable approximations for the OLS-set which can be used instead of the exact description. We illustrate the approach by an example.
Keywords: Linear regression, interval-censored data, computational complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464424 The Diameter of an Interval Graph is Twice of its Radius
Authors: Tarasankar Pramanik, Sukumar Mondal, Madhumangal Pal
Abstract:
In an interval graph G = (V,E) the distance between two vertices u, v is de£ned as the smallest number of edges in a path joining u and v. The eccentricity of a vertex v is the maximum among distances from all other vertices of V . The diameter (δ) and radius (ρ) of the graph G is respectively the maximum and minimum among all the eccentricities of G. The center of the graph G is the set C(G) of vertices with eccentricity ρ. In this context our aim is to establish the relation ρ = δ 2 for an interval graph and to determine the center of it.
Keywords: Interval graph, interval tree, radius, center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638423 Fuzzy Estimation of Parameters in Statistical Models
Authors: A. Falsafain, S. M. Taheri, M. Mashinchi
Abstract:
Using a set of confidence intervals, we develop a common approach, to construct a fuzzy set as an estimator for unknown parameters in statistical models. We investigate a method to derive the explicit and unique membership function of such fuzzy estimators. The proposed method has been used to derive the fuzzy estimators of the parameters of a Normal distribution and some functions of parameters of two Normal distributions, as well as the parameters of the Exponential and Poisson distributions.Keywords: Confidence interval. Fuzzy number. Fuzzy estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265422 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs
Authors: Swapnil Gupta, C. Pandu Rangan
Abstract:
A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.Keywords: Uniquely restricted matching, interval graph, design and analysis of algorithms, matching, induced matching, witness counting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538421 Small Sample Bootstrap Confidence Intervals for Long-Memory Parameter
Authors: Josu Arteche, Jesus Orbe
Abstract:
The log periodogram regression is widely used in empirical applications because of its simplicity, since only a least squares regression is required to estimate the memory parameter, d, its good asymptotic properties and its robustness to misspecification of the short term behavior of the series. However, the asymptotic distribution is a poor approximation of the (unknown) finite sample distribution if the sample size is small. Here the finite sample performance of different nonparametric residual bootstrap procedures is analyzed when applied to construct confidence intervals. In particular, in addition to the basic residual bootstrap, the local and block bootstrap that might adequately replicate the structure that may arise in the errors of the regression are considered when the series shows weak dependence in addition to the long memory component. Bias correcting bootstrap to adjust the bias caused by that structure is also considered. Finally, the performance of the bootstrap in log periodogram regression based confidence intervals is assessed in different type of models and how its performance changes as sample size increases.Keywords: bootstrap, confidence interval, log periodogram regression, long memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730420 Particle Swarm Optimization with Interval-valued Genotypes and Its Application to Neuroevolution
Authors: Hidehiko Okada
Abstract:
The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well approximate hidden target functions despite the fact that no training data was explicitly provided.
Keywords: Evolutionary algorithms, swarm intelligence, particle swarm optimization, neural network, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955419 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets
Authors: O. Poleshchuk, E.Komarov
Abstract:
This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.
Keywords: Interval type-2 fuzzy sets, fuzzy regression, weighted interval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210418 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty
Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong
Abstract:
This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.
Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628417 An Interval-Based Multi-Attribute Decision Making Approach for Electric Utility Resource Planning
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
This paper presents an interval-based multi-attribute decision making (MADM) approach in support of the decision process with imprecise information. The proposed decision methodology is based on the model of linear additive utility function but extends the problem formulation with the measure of composite utility variance. A sample study concerning with the evaluation of electric generation expansion strategies is provided showing how the imprecise data may affect the choice toward the best solution and how a set of alternatives, acceptable to the decision maker (DM), may be identified with certain confidence.Keywords: Decision Making, Power Generation, ElectricUtilities, Resource Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572416 Maximum Likelihood Estimation of Burr Type V Distribution under Left Censored Samples
Abstract:
The paper deals with the maximum likelihood estimation of the parameters of the Burr type V distribution based on left censored samples. The maximum likelihood estimators (MLE) of the parameters have been derived and the Fisher information matrix for the parameters of the said distribution has been obtained explicitly. The confidence intervals for the parameters have also been discussed. A simulation study has been conducted to investigate the performance of the point and interval estimates.
Keywords: Fisher information matrix, confidence intervals, censoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701415 Solution of Interval-valued Manufacturing Inventory Models With Shortages
Authors: Susovan Chakrabortty, Madhumangal Pal, Prasun Kumar Nayak
Abstract:
A manufacturing inventory model with shortages with carrying cost, shortage cost, setup cost and demand quantity as imprecise numbers, instead of real numbers, namely interval number is considered here. First, a brief survey of the existing works on comparing and ranking any two interval numbers on the real line is presented. A common algorithm for the optimum production quantity (Economic lot-size) per cycle of a single product (so as to minimize the total average cost) is developed which works well on interval number optimization under consideration. Finally, the designed algorithm is illustrated with numerical example.Keywords: EOQ, Inventory, Interval Number, Demand, Production, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640414 Some Results on Interval-Valued Fuzzy BG-Algebras
Authors: Arsham Borumand Saeid
Abstract:
In this note the notion of interval-valued fuzzy BG-algebras (briefly, i-v fuzzy BG-algebras), the level and strong level BG-subalgebra is introduced. Then we state and prove some theorems which determine the relationship between these notions and BG-subalgebras. The images and inverse images of i-v fuzzy BG-subalgebras are defined, and how the homomorphic images and inverse images of i-v fuzzy BG-subalgebra becomes i-v fuzzy BG-algebras are studied.
Keywords: BG-algebra, fuzzy BG-subalgebra, interval-valued fuzzy set, interval-valued fuzzy BG-subalgebra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677413 Ranking DMUs by Ideal PPS in Data Envelopment Analysis
Authors: V.Rezaie, M.Khanmohammady
Abstract:
An original DEA model is to evaluate each DMU optimistically, but the interval DEA Model proposed in this paper has been formulated to obtain an efficiency interval consisting of Evaluations from both the optimistic and the pessimistic view points. DMUs are improved so that their lower bounds become so large as to attain the maximum Value one. The points obtained by this method are called ideal points. Ideal PPS is calculated by ideal of efficiency DMUs. The purpose of this paper is to rank DMUs by this ideal PPS. Finally we extend the efficiency interval of a DMU under variable RTS technology.Keywords: Data envelopment analysis (DEA), Decision makingunit (DMU), Interval DEA, Ideal points, Ideal PPS, Return to scale(RTS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918412 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: Data envelopment analysis, interval DEA, efficiency classification, efficiency prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930411 Digital Redesign of Interval Systems via Particle Swarm Optimization
Authors: Chen-Chien Hsu, Chun-Hui Gao
Abstract:
In this paper, a PSO-based approach is proposed to derive a digital controller for redesigned digital systems having an interval plant based on resemblance of the extremal gain/phase margins. By combining the interval plant and a controller as an interval system, extremal GM/PM associated with the loop transfer function can be obtained. The design problem is then formulated as an optimization problem of an aggregated error function revealing the deviation on the extremal GM/PM between the redesigned digital system and its continuous counterpart, and subsequently optimized by a proposed PSO to obtain an optimal set of parameters for the digital controller. Computer simulations have shown that frequency responses of the redesigned digital system having an interval plant bare a better resemblance to its continuous-time counter part by the incorporation of a PSO-derived digital controller in comparison to those obtained using existing open-loop discretization methods.Keywords: Digital redesign, Extremal systems, Particle swarm optimization, Uncertain interval systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270