
 

 

  
Abstract—In many practical applications in various areas, such 

as engineering, science and social science, it is known that there exist 
bounds on the values of unknown parameters. For example, values of 
some measurements for controlling machines in an industrial process, 
weight or height of subjects, blood pressures of patients and 
retirement ages of public servants. When interval estimation is 
considered in a situation where the parameter to be estimated is 
bounded, it has been argued that the classical Neyman procedure for 
setting confidence intervals is unsatisfactory. This is due to the fact 
that the information regarding the restriction is simply ignored. It is, 
therefore, of significant interest to construct confidence intervals for 
the parameters that include the additional information on parameter 
values being bounded to enhance the accuracy of the interval 
estimation. Therefore in this paper, we propose a new confidence 
interval for the coefficient of variance where the population mean and 
standard deviation are bounded. The proposed interval is evaluated in 
terms of coverage probability and expected length via Monte Carlo 
simulation.  

 
Keywords—Bounded parameters, coefficient of variation, 

confidence interval, Monte Carlo simulation.  

I. INTRODUCTION 
HE coefficient of variance (CV) has been one of the most 
widely used statistical measures of the relative dispersion 

since it was introduced by Karl Pearson in 1896 [1]. This is 
due to its important property such that it is a dimensionless 
(unit-free) measure of variation and also its ability that can be 
used to compare several variables or populations with 
different units of measurement [2], [3]. As a result, it has been 
frequently used in numerous fields of knowledge. Here are 
some examples of the use of the CV. In science, the CV is 
often used as a measure of precision of measurement, and also 
used to compare the precision of laboratory experiments or 
techniques. In engineering, it is commonly used to evaluate 
the variability of strength of building materials. It is defined as 
a reference parameter for measurements in clinical diagnostics 
in medicine, and treated as a measure of risk to return in 
finance [3]–[5]. Recent applications of the CV in business, 
climatology and other fields are briefly reviewed in [6].  

In most situations, the CV of a population is practically 
unknown. Therefore the sample CV is required to estimate the 
unknown value. However, for statistical inference purpose and 
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to make best use of the sample CV, it is necessary to construct 
a confidence interval for the population CV. This is simply 
due to the fact that a confidence interval provides much more 
information about the parameter of interest than does a point 
estimate. As discussed in [7], the confidence interval is more 
informative than is the point estimates itself, because it 
contains all plausible values for the estimate of the unknown 
parameter with a specified level of confidence. In addition, the 
width of the confidence interval shows how accurate we 
believe our estimate is, i.e., the smaller width, the more 
precise our estimate of the parameter. 

In general, confidence intervals of scale parameters, when 
parameter space is restricted, have received little attention. 
The development in this area is concentrated on location 
parameters (the population mean and the difference of two 
means) as presented in [8]–[12]. 

Although there have been a number of the confidence 
intervals for the CV, as appeared in recent literature [13], [14], 
the confidence intervals for the CV with restricted parameters 
have not much been done. It is, therefore, of significant 
interest to construct confidence intervals for the scale 
parameters. In this study we choose the CV as a parameter of 
our interest because of its widespread use in describing the 
variation within a data set. Moreover, among scale parameters, 
the CV is a more informative quantity than others. As noted in 
[15], the CV is preferred to the variance or standard deviation 
in various fields of interest, especially in biological and 
medical research. 

The rest of the paper is organized as follows. Section II 
provides confidence intervals for the CV obtained by several 
existing methods when data are normally distributed. Then 
confidence intervals for the CV when the population mean and 
standard deviation are bounded are proposed in Section III. 
Section IV presents the results of simulation studies and 
reports on the performance of the proposed confidence 
intervals. Finally, Section V gives a conclusion with a few 
remarks.  

II. CONFIDENCE INTERVAL FOR COEFFICIENT OF VARIATION 
FROM NORMAL DISTRIBUTION 

In this section we review some of the existing methods for 
constructing confidence intervals of the CV when data are 
normally distributed. The population CV (denoted as τ ) is 
defined as a ratio of the population standard deviation (σ ) to 
the population mean ( μ , 0μ ≠ ), i.e.,  

 

 στ
μ

=  (1) 
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Let 1 2 3, , ,..., nx x x x  be an independently and identically 
distributed (iid) random sample of size n  from a normal 

distribution, 2( , )N μ σ . The sample mean ( x ) and sample 

variance ( 2s ) are the unbiased estimates of μ  and 2σ , 
respectively. Therefore the typical sample estimate of τ  is 
given as 

 

 =
s

cv
x

 (2) 

 

where 1
1 n
i ix x

n == ∑  and 2 2
1

1
1

( ) .n
i is x x

n == −∑
−

 

To construct a confidence interval of the CV, there are 
several methods available. In this study we consider 6 
methods namely Miller’s, McKay’s, Vangel’s, two new 
methods proposed by Mahmoudvand, and Hassani [1] and the 
Method of Variance Estimates Recovery (MOVER) [16]. 

The lower and upper confidence limits of the 100(1 α− )% 
confidence interval for τ  from each method are obtained by 
the followings. 

A. Miller’s Confidence Interval 
Miller [2] proposed a confidence interval based on the 

sample CV that approximates an asymptotic normal 
distribution. Miller’s method, referred to as Mil, has 
confidence limits [ , ]Mil MilL U  given by 
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 (3) 

 

where 1 2/z α− is the 100(1 α− /2)% percentile of the standard 

normal distribution.  

B. McKay’s Confidence Interval 
McKay [17] developed a confidence interval for normal CV 

by using the approximation method. McKay’s method, 
referred to as McK, has confidence limits [ , ]Mck MckL U  given 
by 
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 (4) 

 

where 1 1 2
2

1 ( ), /n
u αχ − −=  and 1 2

2
2 ( ), /n
u αχ −=  are respectively 

the 100(1−α /2) and 100(α /2) percentile of the chi-square 
distribution with 1( )n −  degrees of freedom.  

C. Vangel’s Confidence Interval 
Vangel [18] modified a confidence interval proposed 

byMcKay to obtain a nearly exact interval. Vangel’s method, 
referred to as Van, provides confidence limits slightly 
different from those obtained by McKay’s in (4); Vangel’s 
confidence interval [ , ]Van VanL U  is given by 
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 (5) 

 

D. Mahmoudvand, and Hassani’s Confidence Intervals 
Mahmoudvand, and Hassani [1] introduced two new 

confidence intervals for the CV when data are normally 
distributed. They are respectively referred to, in this study, as 
M&H(I)’s and M&H(II)’s. 

M&H(I)’s confidence interval: by using the normal 
approximation, its confidence limits & ( ) & ( )[ , ]H M I H M IL U  are 

given by 
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 (6) 

 
where 1 22 1 2 1 2/( / ( )) [( ( / ) / ( (( ) / )]nc n n n= − Γ Γ − . 

M&H(II)’s confidence interval: Mahmoudv and, and 
Hassani introduced a new approximate point estimator 

2ˆ / ( )ncv cτ = −  for τ . They showed that the new estimator 
not only gives smaller variance than the typical estimator cv
but it is also asymptotically unbiased. The M&H(II)’s 
confidence limits & ( ) & ( )[ , ]H M II H M IIL U  are given by 
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 (7) 

E. MOVER’s Confidence Interval 
Donner and Zou [16] presented closed-form confidence 

intervals for functions of the normal mean and standard 
deviation including the coefficient of variation. By using the 
method of variance estimates recovery or MOVER, referred to 
as MOV, confidence limits [ , ]MOV MOVL U  for the CV based 
on separate confidence limits computed for the mean and 
standard deviation are given by 
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III. CONFIDENCE INTERVAL FOR COEFFICIENT OF VARIATION 
WITH BOUNDED PARAMETERS 

Following the idea presented by Wang [19], we propose 
confidence intervals for the CV when the unknown parameters 
μ  and σ  are bounded. Although, a true value of a parameter 
of interest is practically unknown, the parameter space is often 
known to be restricted and the bounds of the parameter space 
are known.  

When a parameter to be estimated is bounded, it is widely 
accepted that a confidence interval for a parameter θ  when 
a bθ< <  is the confidence interval of the intersection 
between a bθ< <  and [ , ]L Uθ θ , where Lθ  and Uθ  are lower 
and upper limits of the confidence interval for θ , thus in this 
situation the confidence interval for θ , denoted as CIθ , is 
given by 

 

 ( ) ( )max , ,min ,CI a L b Uθ θ θ
⎡ ⎤= ⎣ ⎦

 (9) 

 
There are four possible outcomes for the confidence interval 

in (9) as follows: 
 
a) if a Lθ>  and b Uθ>  then CIθ is reduced to 

 ,aCI a Uθ θ⎡ ⎤= ⎣ ⎦  (10) 

b) if a Lθ>  and b Uθ<  then CIθ  is reduced to 
 ,bCI a bθ ⎡ ⎤= ⎣ ⎦  (11) 

c) if a Lθ<  and b Uθ>  then CIθ  is reduced to 

 ,cCI L Uθ θ θ⎡ ⎤= ⎣ ⎦  (12) 

d) if a Lθ<  and b Uθ<  then CIθ  is reduced to 

 ,dCI L bθ θ⎡ ⎤= ⎣ ⎦  (13) 

 
When the population mean is bounded, say a bμ< <  

where 0 a b< < , it is straight forward to show that the 
population variance and the standard deviation are also 
bounded as follows: 
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Similarly, the bounded population mean can lead to the 
bounded population CV. 
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Thus the CV is also bounded when the mean and standard 

deviation are bounded. 
According to Wang [19] and Niwitpong [20], the proposed 

confidence interval for τ  with bounded mean and standard 
deviation based on (9) is given by 

 

 max , , min ,  b aCI L U
b aτ τ τ

σ σ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (14) 

 
Equation (14) and confidence limits from existing methods 

presented in Section II are then used to obtain confidence 
intervals for τ when the mean and standard deviation are 
bounded. 

IV. SIMULATION STUDIES 
In this study, we examine the performance of the proposed 

confidence intervals for the CV of a normal distribution under 
the additional information that the population means lies in 
some bounded interval. In addition, we compare the proposed 
confidence intervals to those obtained from the existing 
methods in terms of coverage probability and average length 
of the confidence intervals. Simulation studies using different 
values of sample size (n =  5, 10, 15, 25, 50, and 100) and 
coefficients of variation (CV =  0.05, 0.10, 0.20, 0.33, and 
0.50) are considered. Without loss of generality, the 
population variance is set to 1, i.e., we consider a sample taken 
from a population that has 1( , )N μ , where μ  is adjusted to get 
the required CV. Thus μ = 2, 3, 5, 10, and 20. Each value of 
μ  is set to lie in a bounded interval that has two standard 
deviation wide. Then 95% confidence intervals are 
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constructed based on the existing methods with unbounded 
and bounded parameters. 

The results via Monte Carlo simulation with 10,000 runs for 
each combination of n  and CV, using functions written in R, 
are summarized in Tables I and II. By detailing the estimated 
coverage probabilities and the average lengths (in parentheses) 
for the 95% confidence intervals based on six methods 
including sample sizes and the corresponding CV, Tables I 
and II present the simulation results for the cases of 
unbounded and bounded parameters, respectively.  

In terms of coverage probabilities, the results in Tables I 
and II have identical coverage probabilities for sample size 
larger than 5. All methods perform very well as the coverage 
probabilities exceed the nominal level of 95% and reached 
100%. However, the average lengths of the proposed intervals 
from all methods are similar or shorter in length.  

When 5n =  and CV=0.05, Miller’s method and 
H&M(II)’s method are inferior to the other methods in terms 
of coverage probabilities. As seen in Tables I and II, these two 
methods have coverage probabilities lower than the nominal 
level. This is because; their confidence intervals are much 
shorter than those obtained by other methods. For CV = 0.50, 
MOVER’s intervals become negative and have notably wider 
interval lengths than the other intervals.  

In most cases, the coverage probabilities of the proposed 
intervals that include the bounds of parameters in Table II and 
those of the existing intervals that exclude bounds of 
parameters in Table I are not only higher than the nominal 
level but also identical. Thus, in order to access the 
performance of confidence intervals, the average lengths are 
compared. For this purpose, the ratios of average lengths from 
unbounded intervals to those from bounded intervals are 
calculated and presented in Table III. If the ratio is greater 
than one, the average lengths from unbounded intervals are 
wider than those from bounded intervals. It can be easily seen 
that the ratios are equal or greater than one in most cases, i.e., 
the proposed confidence intervals have narrower widths. We 
can conclude that the proposed confidence intervals are 
superior to the intervals obtained from the existing methods 
that do not take the bounds of parameters into account.  

 
TABLE I 

COVERAGE PROBABILITY AND AVERAGE LENGTH OF 95% CONFIDENCE 
INTERVALS FOR CV WITH UNBOUNDED PARAMETERS 

n Method 
CV 

0.05 0.10 0.20 0.33 0.50 

5 Miller 0.848 
(0.065) 

0.977 
(0.132) 

0.997 
(0.274) 

1.000 
(0.508) 

1.000 
(0.936) 

 McKay 0.952 
(0.109) 

0.998 
(0.228) 

1.000 
(0.598) 

1.000 
(1.184) 

1.000 
 1.350) 

 Vangel 0.952 
(0.108) 

0.998 
(0.220) 

1.000 
(0.484) 

1.000 
(0.917) 

1.000 
(1.173) 

 H&M(I) 0.944 
(0.093) 

0.997 
(0.186) 

1.000 
(0.372) 

1.000 
(0.634) 

1.000 
 0.987) 

 H&M(II) 0.797 
(0.056) 

0.961 
(0.113) 

0.992 
(0.232) 

0.999 
(0.424) 

1.000 
 0.762) 

 MOVER 0.954 
(0.108) 

0.998 
(0.224) 

1.000 
(0.518) 

1.000 
(1.512) 

1.000 
(0.074) 

10 Miller 1.000 
 0.045) 

1.000 
 0.092) 

1.000 
 0.189) 

1.000 
 0.340) 

1.000 
(0.588) 

 McKay 1.000 1.000 1.000 1.000 1.000 

 0.056) (0.114)  0.245)  0.518) (1.109) 
 Vangel 1.000 

(0.055) 
1.000 

(0.113) 
1.000 

(0.238) 
1.000 

(0.461) 
1.000 

 0.930) 
 H&M(I) 1.000 

(0.052) 
1.000 

(0.105) 
1.000 

(0.210) 
1.000 

(0.352) 
1.000 

(0.536) 
 H&M(II) 1.000 

(0.042) 
1.000 

(0.086) 
1.000 

(0.182) 
1.000 

 0.340) 
1.000 

(0.621) 
 MOVER 1.000 

(0.057) 
1.000 

(0.122) 
1.000 

(0.312) 
1.000 

(1.083) 
1.000 

 (-0.971) 

15 Miller 1.000 
(0.036) 

1.000 
 0.073) 

1.000 
(0.152) 

1.000 
(0.273) 

1.000 
(0.465) 

 McKay 1.000 
 0.042) 

1.000 
 0.084) 

1.000 
(0.179) 

1.000 
(0.343) 

1.000 
(0.740) 

 Vangel 1.000 
 0.042) 

1.000 
(0.084) 

1.000 
(0.176) 

1.000 
(0.328) 

1.000 
(0.645) 

 H&M(I) 1.000 
 0.040) 

1.000 
 0.080) 

1.000 
 0.161) 

1.000 
 0.269) 

1.000 
(0.407) 

 H&M(II) 1.000 
 0.035) 

1.000 
(0.072) 

1.000 
(0.155) 

1.000 
(0.302) 

1.000 
(0.568) 

 MOVER 1.000 
 0.043) 

1.000 
(0.095) 

1.000 
(0.263) 

1.000 
 0.915) 

1.000 
 5.952) 

25 Miller 1.000 
 0.028) 

1.000 
(0.057) 

1.000 
(0.117) 

1.000 
(0.209) 

1.000 
(0.351) 

 McKay 1.000 
(0.030) 

1.000 
 0.061) 

1.000 
(0.128) 

1.000 
(0.236) 

1.000 
(0.441) 

 Vangel 1.000 
(0.030) 

1.000 
(0.061) 

1.000 
 0.127) 

1.000 
(0.232) 

1.000 
(0.418) 

 H&M(I) 1.000 
 0.030) 

1.000 
 0.059) 

1.000 
 0.119) 

1.000 
(0.198) 

1.000 
(0.298) 

 H&M(II) 1.000 
(0.028) 

1.000 
(0.057) 

1.000 
(0.129) 

1.000 
(0.266) 

1.000 
(0.518) 

 MOVER 1.000 
 0.032) 

1.000 
 0.074) 

1.000 
 0.229) 

1.000 
(0.841) 

1.000 
(11.867) 

50 Miller 1.000 
(0.020) 

1.000 
(0.040) 

1.000 
(0.082) 

1.000 
(0.146) 

1.000 
 0.244) 

 McKay 1.000 
 0.021) 

1.000 
 0.041) 

1.000 
 0.086) 

1.000 
(0.155) 

1.000 
 0.272) 

 Vangel 1.000 
 0.021) 

1.000 
 0.041) 

1.000 
(0.085) 

1.000 
(0.154) 

1.000 
(0.267) 

 H&M(I) 1.000 
 0.020) 

1.000 
(0.040) 

1.000 
(0.081) 

1.000 
(0.135) 

1.000 
 0.203) 

 H&M(II) 1.000 
(0.020) 

1.000 
 0.043) 

1.000 
 0.104) 

1.000 
 0.233) 

1.000 
 0.480) 

 MOVER 1.000 
 0.023) 

1.000 
 0.059) 

1.000 
(0.206) 

1.000 
(0.794) 

1.000 
(82.440) 

10
0 Miller 1.000 

(0.014) 
1.000 

 0.028) 
1.000 

(0.058) 
1.000 

 0.103) 
1.000 

(0.171) 
 McKay 1.000 

(0.014) 
1.000 

(0.029) 
1.000 

(0.059) 
1.000 

 0.106) 
1.000 

(0.182) 
 Vangel 1.000 

 0.014) 
1.000 

 0.029) 
1.000 

 0.059) 
1.000 

 0.106) 
1.000 

(0.180) 
 H&M(I) 1.000 

(0.014) 
1.000 

 0.028) 
1.000 

(0.056) 
1.000 

(0.094) 
1.000 

(0.141) 
 H&M(II) 1.000 

(0.014) 
1.000 

(0.033) 
1.000 

(0.089) 
1.000 

(0.215) 
1.000 

(0.459) 
 MOVER 1.000 

 0.017) 
1.000 

(0.050) 
1.000 

(0.195) 
1.000 

(0.778) 
1.000 

 8.729) 

V. CONCLUSIONS 
This study looks at the performance of the proposed 

confidence interval for the normal population CV by taking 
into account the bounds of the population mean and standard 
deviation. We consider six existing methods for constructing 
confidence intervals for the normal population CV and apply 
them into two main situations, unbounded and bounded 
parameter spaces.  

The important result from this research is that when we take 
into account the bounds of the population mean and standard 
deviation, the confidence interval obtained from each method 
provides a smaller width in most cases. Moreover, the results 
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of this study not only provide useful insights into the interval 
estimation when parameters being estimated are bounded but 
also support the argument by Koopmans et al. [21] that with 
some prior information about the range of the parameter μ , it 
is possible to obtain confidence intervals for τ  that have finite 
length with probability one for all values of μ  andσ .  

A key advantage of adding the bounds of parameters into 
account is that we are certain that the confidence limits never 
go beyond their parameter bounds. As a result, it should be 
noted that if there is a presence of outliers in a data set, the 
width of a confidence interval obtained by including the 
bounds of the parameter space will be less effect from 
observations with extreme values.  

 
TABLE II 

COVERAGE PROBABILITY AND AVERAGE LENGTH OF 95% CONFIDENCE 
INTERVALS FOR CV WITH BOUNDED PARAMETERS 

n Method 
CV 

0.05 0.10 0.20 0.33 0.50 

5 Miller 0.838 
(0.050) 

0.975 
(0.102) 

0.996 
(0.214) 

0.999 
(0.382) 

1.000 
(0.645) 

 McKay 0.950 
(0.100) 

0.997 
(0.207) 

1.000 
(0.455) 

1.000 
(0.777) 

1.000 
(1.036) 

 Vangel 0.950 
(0.099) 

0.997 
(0.203) 

1.000 
(0.427) 

1.000 
(0.753) 

1.000 
(1.037) 

 H&M(I) 0.944 
(0.087) 

0.997 
(0.174) 

1.000 
(0.351) 

1.000 
(0.587) 

1.000 
(0.886) 

 H&M(II) 0.781 
(0.043) 

0.956 
(0.087) 

0.990 
(0.177) 

0.997 
(0.303) 

1.000 
(0.478) 

 MOVER 0.951 
(0.100) 

0.998 
(0.207) 

1.000 
(0.459) 

1.000 
(-0.138) 

1.000 
(-5.054) 

10 Miller 1.000 
(0.041) 

1.000 
(0.083) 

1.000 
(0.172) 

1.000 
(0.306) 

1.000 
(0.506) 

 McKay 1.000 
(0.055) 

1.000 
(0.111) 

1.000 
(0.240) 

1.000 
(0.491) 

1.000 
(0.932) 

 Vangel 1.000 
(0.055) 

1.000 
(0.111) 

1.000 
(0.233) 

1.000 
(0.449) 

1.000 
(0.842) 

 H&M(I) 1.000 
(0.051) 

1.000 
(0.102) 

1.000 
(0.205) 

1.000 
(0.342) 

1.000 
(0.519) 

 H&M(II) 1.000 
(0.038) 

1.000 
(0.077) 

1.000 
(0.154) 

1.000 
(0.260) 

1.000 
(0.400) 

 MOVER 1.000 
(0.056) 

1.000 
(0.119) 

1.000 
(0.303) 

1.000 
(0.776) 

1.000 
(-17.477) 

15 Miller 1.000 
(0.035) 

1.000 
(0.071) 

1.000 
(0.146) 

1.000 
(0.259) 

1.000 
(0.439) 

 McKay 1.000 
(0.041) 

1.000 
(0.084) 

1.000 
(0.176) 

1.000 
(0.338) 

1.000 
(0.700) 

 Vangel 1.000 
(0.041) 

1.000 
(0.083) 

1.000 
(0.174) 

1.000 
(0.323) 

1.000 
(0.627) 

 H&M(I) 1.000 
(0.039) 

1.000 
(0.079) 

1.000 
(0.158) 

1.000 
(0.264) 

1.000 
(0.402) 

 H&M(II) 1.000 
(0.033) 

1.000 
(0.067) 

1.000 
(0.135) 

1.000 
(0.227) 

1.000 
(0.353) 

 MOVER 1.000 
(0.042) 

1.000 
(0.094) 

1.000 
(0.258) 

1.000 
(0.815) 

1.000 
(-18.644) 

25 Miller 1.000 
(0.028) 

1.000 
(0.056) 

1.000 
(0.116) 

1.000 
(0.207) 

1.000 
(0.344) 

 McKay 1.000 
(0.030) 

1.000 
(0.061) 

1.000 
(0.128) 

1.000 
(0.236) 

1.000 
(0.436) 

 Vangel 1.000 
(0.030) 

1.000 
(0.061) 

1.000 
(0.127) 

1.000 
(0.232) 

1.000 
(0.413) 

 H&M(I) 1.000 
(0.029) 

1.000 
(0.059) 

1.000 
(0.118) 

1.000 
(0.198) 

1.000 
(0.296) 

 H&M(II) 1.000 
(0.027) 

1.000 
(0.054) 

1.000 
(0.110) 

1.000 
(0.186) 

1.000 
(0.288) 

 MOVER 1.000 
(0.032) 

1.000 
(0.074) 

1.000 
(0.227) 

1.000 
(0.802) 

1.000 
(-11.817) 

50 Miller 1.000 
(0.020) 

1.000 
(0.040) 

1.000 
(0.082) 

1.000 
(0.146) 

1.000 
(0.244) 

 McKay 1.000 
(0.021) 

1.000 
(0.041) 

1.000 
(0.086) 

1.000 
(0.155) 

1.000 
(0.272) 

 Vangel 1.000 
(0.021) 

1.000 
(0.041) 

1.000 
(0.085) 

1.000 
(0.154) 

1.000 
(0.267) 

 H&M(I) 1.000 
(0.020) 

1.000 
(0.040) 

1.000 
(0.081) 

1.000 
(0.135) 

1.000 
(0.203) 

 H&M(II) 1.000 
(0.019) 

1.000 
(0.039) 

1.000 
(0.079) 

1.000 
(0.137) 

1.000 
(0.219) 

 MOVER 1.000 
(0.023) 

1.000 
(0.058) 

1.000 
(0.206) 

1.000 
(0.786) 

1.000 
(-18.303) 

10
0 Miller 1.000 

(0.014) 
1.000 

(0.028) 
1.000 

(0.058) 
1.000 

(0.103) 
1.000 

(0.172) 
 McKay 1.000 

(0.014) 
1.000 

(0.029) 
1.000 

(0.059) 
1.000 

(0.106) 
1.000 

(0.183) 
 Vangel 1.000 

(0.014) 
1.000 

(0.029) 
1.000 

(0.059) 
1.000 

(0.106) 
1.000 

(0.181) 
 H&M(I) 1.000 

(0.014) 
1.000 

(0.028) 
1.000 

(0.056) 
1.000 

(0.094) 
1.000 

(0.141) 
 H&M(II) 1.000 

(0.014) 
1.000 

(0.028) 
1.000 

(0.057) 
1.000 

(0.102) 
1.000 

(0.170) 
 MOVER 1.000 

(0.017) 
1.000 

(0.050) 
1.000 

(0.195) 
1.000 

(0.775) 
1.000 

(-33.970) 

 
TABLE III 

RATIOS OF AVERAGE LENGTHS FROM UNBOUNDED INTERVALS TO AVERAGE 
LENGTHS FROM BOUNDED INTERVALS 

n Method 
CV 

0.05 0.10 0.20 0.33 0.50 
5 Miller 1.300 1.294 1.280 1.330 1.451 
 McKay 1.090 1.101 1.314 1.524 1.303 
 Vangel 1.091 1.084 1.133 1.218 1.131 
 H&M(I) 1.069 1.069 1.060 1.080 1.114 
 H&M(II) 1.302 1.299 1.311 1.399 1.594 
 MOVER 1.080 1.082 1.129 -10.957 -0.015 

10 Miller 1.098 1.108 1.099 1.111 1.162 
 McKay 1.018 1.027 1.021 1.055 1.190 
 Vangel 1 1.018 1.021 1.027 1.105 
 H&M(I) 1.020 1.029 1.024 1.029 1.033 
 H&M(II) 1.105 1.117 1.182 1.308 1.553 
 MOVER 1.018 1.025 1.030 1.396 -0.056 

15 Miller 1.029 1.028 1.041 1.054 1.059 
 McKay 1.024 1 1.017 1.015 1.057 
 Vangel 1.024 1.012 1.011 1.015 1.029 
 H&M(I) 1.026 1.013 1.019 1.019 1.012 
 H&M(II) 1.061 1.075 1.148 1.330 1.609 
 MOVER 1.024 1.011 1.019 1.123 -0.319 

25 Miller 1 1.018 1.009 1.010 1.020 
 McKay 1 1 1 1 1.011 
 Vangel 1 1 1 1 1.012 
 H&M(I) 1.034 1 1.008 1 1.007 
 H&M(II) 1.037 1.056 1.173 1.430 1.799 
 MOVER 1 1 1.009 1.049 1.004 

50 Miller 1 1 1 1 1 
 McKay 1 1 1 1 1 
 Vangel 1 1 1 1 1 
 H&M(I) 1 1 1 1 1 
 H&M(II) 1.053 1.103 1.316 1.701 2.192 
 MOVER 1 1.017 1 1.010 -4.504 

100 Miller 1 1 1 1 0.994 
 McKay 1 1 1 1 0.995 
 Vangel 1 1 1 1 0.994 
 H&M(I) 1 1 1 1 1 
 H&M(II) 1 1.179 1.561 2.108 2.700 
 MOVER 1 1 1 1.004 -0.257 
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