Search results for: electron backscatter diffraction
224 Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination
Authors: Iris Käppler, Paul Matthäi, Chokri Cherif
Abstract:
In the scope of application of technical textiles, Non- Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitchfree method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxy-fluorination was used. The modification of carbonfibres by oxy-fluorination was investigated via scanning electron microscope, X-ray photoelectron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.
Keywords: Non-Crimp Fabric, adhesive, stitch-free, high-performance fibre.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036223 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag- Ni (60/40) Contact Materials
Authors: Mohamed Akbi
Abstract:
The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silvernickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196- 256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.
Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375222 Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology
Authors: S. W. Hong, Y. S. Choi, T. H. Chung, J. H. Song, H. S. Kim
Abstract:
Bio-electrical responses obtained from freshwater sediments by employing microbial fuel cell (MFC) technology were investigated in this experimental study. During the electricity generation, organic matter in the sediment was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that the sediment organic matter (SOM) associated with electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, together with the decrease in the quantity of SOM. The alteration of characteristics of the SOM was analogous to that commonly observed in the early stage of SOM diagenetic process (i.e., humification). These findings including an elevation of the sediment redox potential present a possibility of the MFC technology as a new soil/sediment remediation technique based on its potential benefits: non-destructive electricity generation and bioremediation.Keywords: Anaerobic oxidation, microbial fuel cell, remediation, sediment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040221 High Efficiency Class-F Power Amplifier Design
Authors: Abdalla Mohamed Eblabla
Abstract:
Due to the high increase in and demand for a wide assortment of applications that require low-cost, high-efficiency, and compact systems, RF power amplifiers are considered the most critical design blocks and power consuming components in wireless communication, TV transmission, radar, and RF heating. Therefore, much research has been carried out in order to improve the performance of power amplifiers. Classes-A, B, C, D, E and F are the main techniques for realizing power amplifiers.
An implementation of high efficiency class-F power amplifier with Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) was realized in this paper. The simulation and optimization of the class-F power amplifier circuit model was undertaken using Agilent’s Advanced Design system (ADS). The circuit was designed using lumped elements.
Keywords: Power Amplifier (PA), Gallium Nitride (GaN), Agilent’s Advanced Design system (ADS) and lumped elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4154220 Fatigue Behavior of Dissimilar Welded Monel400 and SS316 by FSW
Authors: Aboozar Aghaei, Kamran Dehghani
Abstract:
In the present work, the dissimilar Monel400 and SS316 were joined by Friction Stir Welding (FSW). The applied rotating speed was 400 rpm, whereas the traverse speed varied between 50 and 150 mm/min. At a constant rotating speed, the sound welds were obtained at the welding speeds of 50 mm/min and 100 mm/min. However, a groove-like defect was formed when the welding speed exceeded 100 mm/min. The mechanical properties of the joints were evaluated using tensile and fatigue tests. The fatigue strength of dissimilar FSWed specimens was higher than that of both Monel400 and SS316. To study the failure behavior of FSWed specimens, the fracture surfaces were analyzed using a Scanning Electron Microscope (SEM). The failure analysis indicates that different mechanisms may contribute to the fracture of welds. This was attributed to the dissimilar characteristics of dissimilar materials exhibiting different failure behaviors.
Keywords: Frictions stir welding, FSW, stainless steel, Monel400, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145219 Performance of Membrane Bioreactor (MBR) in High Phosphate Wastewater
Authors: Aida Isma M. I., Putri Razreena A. R., Rozita Omar, Azni Idris
Abstract:
This study presents the performance of membrane bioreactor in treating high phosphate wastewater. The laboratory scale MBR was operated at permeate flux of 25 L/m2.h with a hollow fiber membrane (polypropylene, approx. pore size 0.01 - 0.2 μm) at hydraulic retention time (HRT) of 12 hrs. Scanning electron microscopy (SEM) and energy diffusive X-ray (EDX) analyzer were used to characterize the membrane foulants. Results showed that the removal efficiencies of COD, TSS, NH3-N and PO4 3- were 93, 98, 80 and 30% respectively. On average 91% of influent soluble microbial products (SMP) were eliminated, with the eliminations of polysaccharides mostly above 80%. The main fouling resistance was cake resistance. It should be noted that SMP were found in major portions of mixed liquor that played a relatively significant role in membrane fouling. SEM and EDX analyses indicated that the foulants covering the membrane surfaces comprises not only organic substances but also inorganic elements including Mg, Ca, Al, K and P.Keywords: Membrane bioreactor (MBR), membrane fouling, phosphates, soluble microbial products (SMP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3370218 Cladding of Al and Cu by Differential Speed Rolling
Authors: Tae Yun Chung, Jungho Moon, Tae Kwon Ha
Abstract:
Al/Cu clad sheet has been fabricated by using differential speed rolling (DSR) process, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100 and 150oC with speed ratios from 1.4 to 2.2, in which the total thickness reduction was in the range between 14 and 46%. Interfacial microstructure and mechanical properties of Al/Cu clad were investigated by scanning electron microscope equipped with energy dispersive X-ray detector, and tension tests. The DSR process was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing speed ratio. Post heat treatment enhanced the mechanical properties of clad sheet by forming intermetallic compounds in the interface area.
Keywords: Aluminum/Copper clad sheet, Differential speed rolling, Interface microstructure, Annealing, Tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350217 Removal of Hexavalent Chromium from Wastewater by Use of Scrap Iron
Authors: Marius Gheju, Rodica Pode
Abstract:
Hexavalent chromium is highly toxic to most living organisms and a known human carcinogen by the inhalation route of exposure. Therefore, treatment of Cr(VI) contaminated wastewater is essential before their discharge to the natural water bodies. Cr(VI) reduction to Cr(III) can be beneficial because a more mobile and more toxic chromium species is converted to a less mobile and less toxic form. Zero-valence-state metals, such as scrap iron, can serve as electron donors for reducing Cr(VI) to Cr(III). The influence of pH on scrap iron capacity to reduce Cr(VI) was investigated in this study. Maximum reduction capacity of scrap iron was observed at the beginning of the column experiments; the lower the pH, the greater the experiment duration with maximum scrap iron reduction capacity. The experimental results showed that highest maximum reduction capacity of scrap iron was 12.5 mg Cr(VI)/g scrap iron, at pH 2.0, and decreased with increasing pH up to 1.9 mg Cr(VI)/g scrap iron at pH = 7.3.
Keywords: hexavalent chromium, heavy metals, scrap iron, reduction capacity, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085216 Investigation of Mg and Zr Addition on the Mechanical Properties of Commercially Pure Al
Authors: Samiul Kaiser, M. S. Kaiser
Abstract:
The influence of Mg and Zr addition on mechanical properties such as hardness, tensile strength and impact energy of commercially pure Al are investigated. The microstructure and fracture behavior are also studied by using Optical and Scanning Electron Microscopy. It is observed that magnesium addition improves the mechanical properties of commercially pure Al at the expense of ductility due to formation of β″ (Al3Mg) and β′ (Al3Mg2) phase into the alloy. Zr addition also plays a positive role through grain refinement effect and the formation of metastable L12 Al3Zr precipitates. In addition, it is observed that the fractured surface of Mg added alloy is brittle and higher numbers of dimples are observed in case of Zr added alloy.
Keywords: Al-alloys, hardness, tensile strength, impact energy, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676215 Chips of Ti-6Al-2Sn-4Zr-6Mo Alloy – A Detailed Geometry Study
Authors: Dmytro Ostroushko, Karel Saksl, Carsten Siemers, Zuzana Rihova
Abstract:
Titanium alloys like Ti-6Al-2Sn-4Zr-6Mo (Ti- 6246) are widely used in aerospace applications. Component manufacturing, however, is difficult and expensive as their machinability is extremely poor. A thorough understanding of the chip formation process is needed to improve related metal cutting operations.In the current study, orthogonal cutting experiments have been performed and theresulting chips were analyzed by optical microscopy and scanning electron microscopy.Chips from aTi- 6246ingot were produced at different cutting speeds and cutting depths. During the experiments, depending of the cutting conditions, continuous or segmented chips were formed. Narrow, highly deformed and grain oriented zones, the so-called shear zone, separated individual segments. Different material properties have been measured in the shear zones and the segments.Keywords: Titanium alloy, Ti-6246, chip formation, machining, shear zone, microstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741214 Tailoring the Sharpness of Tungsten Nanotips via Laser Irradiation Enhanced Etching in KOH
Authors: D. D. Wang, J.C. Lam, Z. H. Mai
Abstract:
Controlled modification of appropriate sharpness for nanotips is of paramount importance to develop novel materials and functional devices at a nanometer resolution. Herein, we present a reliable and unique strategy of laser irradiation enhanced physicochemical etching to manufacture super sharp tungsten tips with reproducible shape and dimension as well as high yields (~80%). The corresponding morphology structure evolution of tungsten tips and laser-tip interaction mechanisms were systematically investigated and discussed using field emission scanning electron microscope (SEM) and physical optics statistics method with different fluences under 532 nm laser irradiation. This work paves the way for exploring more accessible metallic tips applications with tunable apex diameter and aspect ratio, and, furthermore, facilitates the potential sharpening enhancement technique for other materials used in a variety of nanoscale devices.Keywords: Tungsten tip sharpening, Laser irradiation, Physicochemical etching, Light-matter interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954213 Effect of Addition the Dune Sand Powder on Development of Compressive Strength and Hydration of Cement Pastes
Authors: S. Guettala, B. Mezghiche
Abstract:
In this paper, the effect of addition the dune sand powder (DSP) on development of compressive strength and hydration of cement pastes was investigated as a function of water/binder ratio, was varied, on the one hand, the percentage of DSP and on the other, the fineness of DSP. In order to understand better the pozzolanic effect of dune sand powder in cement pastes, we followed the mixtures hydration (50% Pure Lime + 50% DSP) by X-ray diffraction. These mixtures the pastes present a hydraulic setting which is due to the formation of a C-S-H phase (calcium silicate hydrate). The latter is semi-crystallized. This study is a simplified approach to that of the mixtures (80% ordinary Portland cement + 20% DSP), in which the main reaction is the fixing of the lime coming from the cement hydration in the presence of DSP, to form calcium silicate hydrate semi-crystallized of second generation. The results proved that up to (20% DSP) as Portland cement replacement could be used with a fineness of 4000 cm²/g without affecting adversely the compressive strength. After 28 days, the compressive strength at 5, 10 and 15% DSP is superior to Portland cement, with an optimum effect for a percentage of the order of 5% to 10% irrespective of the w/b ratio and fineness of DSP.
Keywords: Ordinary Portland Cement, Pure Lime, Dune Sand Powder, Compressive Strength, Hydration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112212 Effect of Lime on the California Bearing Ratio Behaviour of Fly Ash - mine Overburden Mixes
Authors: B. Behera, M. K. Mishra
Abstract:
Typically thermal power plants are located near to surface coal mines that produce huge amount of fly ash as a waste byproduct. Disposal of fly ash causes significant economic and environmental problems. Now-a-days, research is going on for bulk utilization of fly ash. In order to increase its percentage utilization, an investigation was carried out to evaluate its potential for haul road construction. This paper presents the laboratory California bearing ratio (CBR) tests and evaluates the effect of lime on CBR behavior of fly ash - mine overburden mixes. Tests were performed with different percentages of lime (2%, 3%, 6%, and 9%). The results show that the increase in bearing ratio of fly ash-overburden mixes was achieved by lime treatment. Scanning electron microscopy (SEM) analyses were conducted on 28 days cured specimens. The SEM study showed that the bearing ratio development is related to the microstructural development.Keywords: California bearing ratio, Fly ash, Mine overburden, Lime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628211 Graft Copolymerization of Cellulose Acetate with Nitro-N-Amino Phenyl Maleimides
Authors: Azza. A. Al-Ghamdi, Abir. A. Abdel-Naby
Abstract:
The construction of Nitro -N-amino phenyl maleimide branches onto Cellulose acetate (CA) substrate by free radical graft copolymerization using benzoyl peroxide as initiator led to formation of highly thermal stable copolymers as shown from the results of gravimetric analysis (TGA). CA-g-2,4-dinitro amino phenyl maleimide exhibited higher thermal stability than the CA-g-4-nitro amino phenyl maleimide as shown from the initial decomposition temperature (To). This is due to the ability of nitro group to form hydrogen bonding with hydroxyl group of the glucopyranose ring which increases the crystallinity of polymeric matrix. The crystalline shapes representing the graft part are clearly distinct in the Emission scanning electron microscope (ESEM) morphology of the copolymer. A suggested reaction mechanism for the grafting process was also discussed.
Keywords: Cellulose acetate, crystallinity, graft copolymerization, thermal properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736210 Wear Behaviors of B4C and SiC Particle Reinforced AZ91 Magnesium Matrix Metal Composites
Authors: M. E. Turan, H. Zengin, E. Cevik, Y. Sun, Y. Turen, H. Ahlatci
Abstract:
In this study, the effects of B4C and SiC particle reinforcements on wear properties of magnesium matrix metal composites produced by pressure infiltration method were investigated. AZ91 (9%Al-1%Zn) magnesium alloy was used as a matrix. AZ91 magnesium alloy was melted under an argon atmosphere. The melt was infiltrated to the particles with an appropriate pressure. Wear tests, hardness tests were performed respectively. Microstructure characterizations were examined by light optical (LOM) and scanning electron microscope (SEM). The results showed that uniform particle distributions were achieved in both B4C and SiC reinforced composites. Wear behaviors of magnesium matrix metal composites changed as a function of type of particles. SiC reinforced composite has better wear performance and higher hardness than B4C reinforced composite.Keywords: Magnesium matrix composite, pressure infiltration, SEM, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686209 Analysis of Polymer Surface Modifications due to Discharges Initiated by Water Droplets under High Electric Fields
Authors: Michael G. Danikas, Ramanujam Sarathi, Pavlos Ramnalis, Stefanos L. Nalmpantis
Abstract:
This paper investigates the influence of various parameters on the behaviour of water droplets on polymeric surfaces under high electric fields. An inclined plane test was carried out to understand the droplet behaviour in strong electric field. Parameters such as water droplet conductivity, droplet volume, polymeric surface roughness and droplet positioning with respect to the electrodes were studied. The flashover voltage is affected by all aforementioned parameters. The droplet positioning is in some cases more vital than the droplet volume. Surface damages were analysed using Scanning Electron Microscopy (SEM) studies and by Energy dispersive X-ray Analysis (EDAX). It is observes that magnitude of discharge have direct influence on amount of surface daKeywords: Water droplet, polymeric surface, hydrophobicity, partial discharges, SEM, EDAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029208 Effects of Coupling Agent on the Properties of Durian Skin Fibre Filled Polypropylene Composite
Authors: Hazleen Anuar, Nur Aimi Mohd Nasir, Yousuf El-Shekeil
Abstract:
Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological, and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.Keywords: Durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169207 Production of Energetic Nanomaterials by Spray Flash Evaporation
Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer
Abstract:
Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.
Keywords: Continuous synthesis, energetic material, nanoscale, nanothermite, nanoexplosive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436206 Effect of Dose Rate of Irradiation on Ultrastructure of Duodenal Mucosa
Authors: L. Labéjof, I. Mororó, P. Galle, G. Barbosa, M.I. Severo, A.H. de Oliveira
Abstract:
Ultrastructure of duodenum mucosa of irradiated rat was studied versus dose rate of irradiation following exposure to gamma rays from 60-Cobalt source. The animals were whole body irradiated at two dose rates (1 Gy.mn-1 and 1 Gy.h-1) and three total doses (1, 2 or 4 Gy) for each dose rate. 24 or 48 h after irradiation, their small intestine was removed and samples of duodenum were processed for observations under a transmission electron microscopy. Samples of duodenum mucosa of control rats were processed in the same way. For the lower dose rate of 1 Gy.h-1, main lesions characteristic of apoptosis were detected within irradiated enterocytes at a total dose of 2 Gy and 24 h after exposure. Necrosis was noted in the samples, 48 h after exposition. For the higher dose rate of 1 Gy.mn-1, fewer changes were detected at all total doses 24 or 48 h irradiation. Thus, it was shown that the appearance of radiationinduced alterations varies not only with increasing total dose and post-irradiation time but especially with decreasing dose rate.Keywords: Dose rate, Radiation Inury, Apoptosis, SmallBowel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947205 Influence of Surface-Treated Coarse Recycled Concrete Aggregate on Compressive Strength of Concrete
Authors: Sallehan Ismail, Mahyuddin Ramli
Abstract:
This paper reports on the influence of surface-treated coarse recycled concrete aggregate (RCA) on developing the compressive strength of concrete. The coarse RCA was initially treated by separately impregnating it in calcium metasilicate (CM) or wollastonite and nanosilica (NS) prepared at various concentrations. The effects of both treatment materials on concrete properties (e.g., slump, density and compressive strength) were evaluated. Scanning electron microscopy (SEM) analysis was performed to examine the microstructure of the resulting concrete. Results show that the effective use of treated coarse RCA significantly enhances the compressive strength of concrete. This result is supported by the SEM analysis, which indicates the formation of a dense interface between the treated coarse RCA and the cement matrix. Coarse RCA impregnated in CM solution results in better concrete strength than NS, and the optimum concentration of CM solution recommended for treated coarse RCA is 10%.
Keywords: Calcium metasilicate, compressive strength, nanosilica, recycled concrete aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858204 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress
Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu
Abstract:
The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and resistance to annealing softening. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.Keywords: DC plating, internal stress, leveling power, Ni-Mn coating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020203 Suitability of Class F Flyash for Construction Industry: An Indian Scenario
Authors: M. N. Akhtar, J. N. Akhtar
Abstract:
The present study evaluates the properties of class F fly ash as a replacement of natural materials in civil engineering construction industry. The low-lime flash similar to class F is the prime variety generated in India, although it has significantly smaller volumes of high-lime fly ash as compared to class C. The chemical and physical characterization of the sample is carried out with the number of experimental approaches in order to investigate all relevant features present in the samples. For chemical analysis, elementary quantitative results from point analysis and scanning electron microscopy (SEM)/dispersive spectroscopy (EDS) techniques were used to identify the element images of different fractions. The physical properties found very close to the range of common soils. Furthermore, the fly ash-based bricks were prepared by the same sample of class F fly ash and the results of compressive strength similar to that of Standard Clay Brick Grade 1 available in the local market of India.
Keywords: Flyash, class F, class C, chemical, physical, SEM, EDS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859202 The Cadmium Adsorption Study by Using Seyitomer Fly Ash, Diatomite and Molasses in Wastewater
Authors: N. Tugrul, E. Moroydor Derun, E. Cinar, A. S. Kipcak, N. Baran Acarali, S. Piskin
Abstract:
Fly ash is an important waste, produced in thermal power plants which causes very important environmental pollutions. For this reason the usage and evaluation the fly ash in various areas are very important. Nearly, 15 million tons/year of fly ash is produced in Turkey. In this study, usage of fly ash with diatomite and molasses for heavy metal (Cd) adsorption from wastewater is investigated. The samples of Seyitomer region fly ash were analyzed by X-ray fluorescence (XRF) and Scanning Electron Microscope (SEM) then diatomite (0 and 1% in terms of fly ash, w/w) and molasses (0-0.75 mL) were pelletized under 30 MPa of pressure for the usage of cadmium (Cd) adsorption in wastewater. After the adsorption process, samples of Seyitomer were analyzed using Optical Emission Spectroscopy (ICP-OES). As a result, it is seen that the usage of Seyitomer fly ash is proper for cadmium (Cd) adsorption and an optimum adsorption yield with 52% is found at a compound with Seyitomer fly ash (10 g), diatomite (0.5 g) and molasses (0.75 mL) at 2.5 h of reaction time, pH:4, 20ºC of reaction temperature and 300 rpm of stirring rate.
Keywords: Heavy metal, fly ash, molasses, diatomite, adsorption, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149201 The Effect of Dispersed MWCNTs Using SDBS Surfactant on Bacterial Growth
Authors: J.E. Park, G.R. Kim, D.J. Yoon, C.H. Sin, I.S. Park, T.S. Bea, M.H. Lee
Abstract:
Carbon nanotubes (CNTs) are attractive because of their excellent chemical durability mechanical strength and electrical properties. Therefore there is interest in CNTs for not only electrical and mechanical application, but also biological and medical application. In this study, the dispersion power of surfactant-treated multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. Surfactant was used sodium dodecyl-benzenesulfonate (SDBS). UV-vis absorbance and transmission electron microscopy(TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase, showing that the surfactant molecules had been adsorbed onto the MWCNTs surface. The surfactant-treated MWCNTs exhibited antimicrobial activities to streptococcus mutans. The optical density growth curves and viable cell number determined by the plating method suggested that the antimicrobial activity of surfactant-treated MWCNTs was both concentration and treatment time-dependent.Keywords: MWCNT, SDBS, surfactant, antibacterial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038200 Electrostatic and Dielectric Measurements for Hair Building Fibers from DC to Microwave Frequencies
Authors: K. Y. You, Y. L. Then
Abstract:
In recent years, the hair building fiber has become popular, in other words, it is an effective method which helps people who suffer hair loss or sparse hair since the hair building fiber is capable to create a natural look of simulated hair rapidly. In the markets, there are a lot of hair fiber brands that have been designed to formulate an intense bond with hair strands and make the hair appear more voluminous instantly. However, those products have their own set of properties. Thus, in this report, some measurement techniques are proposed to identify those products. Up to five different brands of hair fiber are tested. The electrostatic and dielectric properties of the hair fibers are macroscopically tested using design DC and high frequency microwave techniques. Besides, the hair fibers are microscopically analysis by magnifying the structures of the fiber using scanning electron microscope (SEM). From the SEM photos, the comparison of the uniformly shaped and broken rate of the hair fibers in the different bulk samples can be observed respectively.
Keywords: Hair fiber, electrostatic, dielectric properties, broken rate, microwave techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3872199 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats
Authors: S. Mohammadzadehmoghadam, Y. Dong
Abstract:
In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.Keywords: Electrospinning, gelatin, mechanical properties, nanocomposites, silk fibroin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891198 Wear Mechanisms in High Speed Steel Gear Cutting Tools
Authors: M. Jalali Azizpour, H. Mohammadi majd
Abstract:
In this paper, the wear of high speed steel hobs during hobbing has been studied. The wear mechanisms are strongly influenced by the choice of cutting speed. At moderate and high cutting speeds three major wear mechanisms were identified: abrasion, mild adhesive and severe adhesive. The microstructure and wear behavior of two high speed steel grades (M2 and ASP30) has been compared. In contrast, a variation in chemical composition or microstructure of HSS tool material generally did not change the dominant wear mechanism. However, the tool material properties determine the resistance against the operating wear mechanism and consequently the tool life. The metallographic analysis and wear measurement at the tip of hob teeth included scanning electron microscopy and stereoscope microscopy. Roughness profilometery is used for measuring the gear surface roughness.Keywords: abrasion, adhesion, cutting speed, hobbing, wear mechanism
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3296197 Biodegradation of Polyhydroxybutyrate-Co- Hydroxyvalerate (PHBV) Blended with Natural Rubber in Soil Environment
Authors: K. Kuntanoo, S. Promkotra, P. Kaewkannetra
Abstract:
According to synthetic plastics obtained from petroleum cause some environmental problems. Therefore, degradable plastics become widely used and studied for replacing the synthetic plastic waste. A biopolymer of poly hydroxybutyrate-co-hydroxyvalerate (PHBV) is subgroups of a main kind of polyhydroxyalkanoates (PHAs). Naturally, PHBV is hard, brittle and low flexible while natural rubber (NR) is high elastic latex. Then, they are blended and the biodegradation of the blended PHBV and NR films were examined in soil environment. The results showed that the degradation occurs predominantly in the bulk of the samples. The order of biodegradability was shown as follows: PHBV> PHBV/NR> NR. After biodegradation, the blended films were characterized by appearance analysis such as Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). It was found that the biodegradation mainly occurred at the polymer surface.
Keywords: Biodegradation, polyhydroxyalkanoates (PHAs), Polyhydroxybutyrate-co-hydroxyvalerate (PHBV), natural rubber (NR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594196 Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite
Authors: Mohammad D. H. Beg, John O. Akindoyo, Suriati Ghazali, Abdullah A. Mamun
Abstract:
In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusion followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite.
Keywords: Fiber treatment, impact modifier, natural fibers, ultrasound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3276195 Modeling the Transport of Charge Carriers in the Active Devices MESFET, Based of GaInP by the Monte Carlo Method
Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi
Abstract:
The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.
Keywords: Monte Carlo simulation, transient electron transport, MESFET device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665