Effects of Coupling Agent on the Properties of Durian Skin Fibre Filled Polypropylene Composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Effects of Coupling Agent on the Properties of Durian Skin Fibre Filled Polypropylene Composite

Authors: Hazleen Anuar, Nur Aimi Mohd Nasir, Yousuf El-Shekeil

Abstract:

Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological, and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.

Keywords: Durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1110357

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128

References:


[1] Asokan P, Osmani M, Price ADF. Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. J Clean Prod 2009;17:821-9.
[2] Wambua P, Ivens J, Verpoest I. Natural fibers: can they replace glass in fiber reinforced plastics? Compos Sci Tech 2003;63:1259-1264.
[3] Arrakhiz FZ, El Achaby M, Kakou CA, Vaudreuil S, Benmoussa K, Bouhfid R. Mechanical properties of high density polyethylene reinforced with chemically modifies coir fibers: impact of chemical treatments. Mater Des 2012;37:379-83.
[4] Justiz-Smith NG, Virgo GJ, Buchanan VE. Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Mater Charact 2008;59:1273-8.
[5] Voon Y, Sheikh Abdul Hamid N, Rusul G, Osman A, Quek S. Physicochemical, microbial and sensory changes of minimally processed durian (Durio zibethinus cv. D24) during storage at 4 and 28 oC. Postharvest Biology and Technology 2006;42:168–75.
[6] Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS. Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Compos. Struct. 2006;72(4):429-37.
[7] El-Sabbagh. Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Compos Part B-Eng 2014;57:126-35.
[8] Nadir Ayrilmis, Alperen Kaymakci, Ferhat Ozdemir. Physical, mechanical and thermal properties of polypropylene composites filled with walnut shell flour. J Ind Eng Chem 2013;19:908-14.
[9] Yan ZL, Wang H, Lau KT, Pather S, Zhang JC, Lin G, Ding Y. Reinforcement of polypropylene with hemp fibres. Compo Part B-Eng 2013;46:221-6.
[10] Kim HS, Kim S, Kim HJ, Yang HS. Thermal properties of bio-flour filled polyelefin with different compatibilizing agent type and content. Thermochim Acta 2006;451:181-8.
[11] Meysam Zahedi, Hamidreza Pirayesh, Hossein Khanjanzadeh, Mohsen Mohseni Tabar. Organo-modified montmorillonite reinforced walnut shell/polypropylene composites. Mater Des 2013;51:803-9.
[12] Ferg EE, Bolo LL. A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases. Polym Testing 2013;32:1452-9.
[13] Anuar H, Wan Busu WN, Ahmad SH, Rasid R. Reinforced thermoplastic natural rubber hybrid composites with Hibiscus cannabinus, L and short glass fiber – Part I: Processing parameters and tensile properties. J Compos Mater 2008;42(11):1075-87.
[14] Ezequiel Perez, Lucia Fama, Pardo SG, Abad MJ, Celina Bernal. Tensile and fracture behaviour of PP/wood flour composites. Compos Part BEng 2012;43:2795-800.
[15] Cantero, G., Arbelaiz, A., Llano-Ponte, R. & Mondragon, I. 2003. Effects of fiber treatment on wettability and mechanical behavior of flax/polypropylene composites. Compos. Sci. & Technol. 63: 1247-1254.
[16] Harper D, Wolcott M. Interaction between coupling agent and lubricants in wood–polypropylene composites. Compos Part A-2004;35:385-94.
[17] Azwa ZN, Yousif BF, Manalo AC, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater Des 2013; 47: 424-42.
[18] Ragoubi M, George B, Molina S, Bienaime D, Merlin A, Hiver JM, Dahoun A. Effect of corona discharge treatment on mechanical and thermal properties of composites based on michantus fibres and polylactic acid or polypropylene matrix. Compos Part A- Appl Sci Manu 2012; 43: 675-85.
[19] Faisal Amri, Salmah Husseinsyah, Kamarudin Hussin. Mechanical, morphological and thermal properties of chitosan filled polypropylene composites: The effect of binary modifying agents. Compos Part AAppl Sci Manu 2013; 46: 89-95.