Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32759
Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats

Authors: S. Mohammadzadehmoghadam, Y. Dong

Abstract:

In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.

Keywords: Electrospinning, gelatin, mechanical properties, nanocomposites, silk fibroin.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1474413

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824

References:


[1] B. Dhandayuthapani, Y. Yoshida, T. Maekawa T, D. S. Kumar, "Polymeric scaffolds in tissue engineering application: A review," Int. J. Polym. Sci., 2011.
[2] H. Fernandes, L. Moroni, C. Van Blitterswijk, J. De Boer, "Extracellular matrix and tissue engineering applications," J. Mater. Chem., vol. 19 no. 31, pp.5474-5484, 2009.
[3] S. Agarwal, J. H. Wendorff, A. Greiner, "Use of electrospinning technique for biomedical applications," Polymer, vol. 49, no. 26, pp. 5603-5621, 2008.
[4] G. C. Ingavle, J. K. Leach, "Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering," Tissue Eng. Part B. vol. 20, no. 4, pp.277-293, 2014
[5] D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, D. L. Kaplan, "Materials fabrication from Bombyx mori silk fibroin," Nat. Protoc., vol. 6, no. 10, pp. 1612-1631, 2011.
[6] B. Kundu, R. Rajkhowa, S. C. Kundu, X. Wang, "Silk fibroin biomaterials for tissue regenerations," Adv. Drug Delivery Rev., vol.65, no. 4, pp. 457-470, 2013.
[7] F. Mottaghitalab, H. Hosseinkhani, M. A. Shokrgozar, C. Mao, M. Yang, M. Farokhi, "Silk as a potential candidate for bone tissue engineering," J. Controlled Release, vol. 215, pp. 112-128, 2015.
[8] L. D. Koh, Y. Cheng, C. P. Teng, Y. W. Khin, X. J. Loh, S. Y. Tee, M. Low, E. Ye, H. D. Yu, Y. W. Zhang, M. Y. Han, "Structures, mechanical properties and applications of silk fibroin materials," Prog. Polym. Sci., vol. 46, pp. 86-110, 2015.
[9] Y. Fukuda, D. Aytemiz, A. Higuchi, Y. Ichida, T. Asakura, T. Kameda, Y. Nakazawa, "Relationship between structure and physical strength of silk fibroin nanofiber sheet depending on insolubilization treatment," J. Appl. Polym. Sci., vol. 134, no. 48, pp. 45560 (1-8), 2017.
[10] X. Li, J. Qin, J. Ma, "Silk fibroin/poly (vinyl alcohol) blend scaffolds for controlled delivery of curcumin," Regener. Biomater., vol. 2, no. 2, pp. 97-105, 2015.
[11] I. S. Yeo, J. E. Oh, L. Jeong, T. S. Lee, S. J. Lee, W. H. Park, B. M. Min, "Collagen-based biomimetic nanofibrous scaffolds: Preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures,". Biomacromolecules, vol. 9, no. 4, pp. 1106-1116, 2008.
[12] G. J. Lai, K. T. Shalumon, S. H. Chen, J. P. Chen, "Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells," Carbohydr. Polym., vol. 111, pp. 288-297, 2014.
[13] Y. H. Shan, L. H. Peng, X. Liu, X. Chen, J. Xiong, J. Q. Gao, "Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Int. J. Pharm., vol. 479, no. 2, pp. 291-301, 2015.
[14] M. C. Echave, L.S. Burgo, J. L. Pedraz, G. Orive, "Gelatin as biomaterial for tissue engineering," Curr. Pharm. Des., vol. 23, no. 24, pp. 3567-3584, 2017.
[15] A. A. Aldana, G. A. Abraham, "Current advances in electrospun gelatin-based scaffolds for tissue engineering applications," nt. J. Pharm., vol. 523, no. 2, pp. 441-453, 2017.
[16] Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, S. Ramakrishna, "Crosslinking of the electrospun gelatin nanofibers," Polymer, vol. 47, no. 8, pp. 2911-2917, 2006.
[17] S. A. Poursamar, A. N. Lehner, M. Azami, S. Ebrahimi-Barough, A. Samadikuchaksaraei, A. P. M. Antunes, "The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffol," Mater. Sci. Eng., C., vol. 63, pp. 1-9, 2006.
[18] R. Yao, J. He, G. Meng, B. Jiang, F. Wu, "Electrospun PCL/Gelatin composite fibrous scaffolds: Mechanical properties and cellular responses," J. Biomater. Sci., Polym. Ed., vol. 27, no. 9, pp. 824-838, 2016.
[19] J. B. Lee, Y. G. Ko, D. Cho, W. H. Park, O. H. Kwon, "Modification and optimization of electrospun gelatin sheets by electron beam irradiation for soft tissue engineering," Biomater. Res., vol. 21, no. 1, 4, 2017.
[20] G. Yin, Y. Zhang, W. Bao, J. Wu, S. De-bing, D. Zhi-hui, F. Wei-guo, "Study on the properties of the electrospun silk fibroin/gelatin blend nanofibers for scaffolds," J. Appl. Polym. Sci., vol. 111, no. 3, pp. 1471-1477, 2009.
[21] M, Dadras Chomachayi, A. Solouk, S. Akbari, D. Sadeghi, F. Mirahmadi, H. Mirzadeh, "Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: Thyme essential oil and doxycycline monohydrate release study. J. Biomed. Mater. Res. Part A., vol. 106, no. 4, pp. 1092-1103, 2018.
[22] M. Okhawilai, R. Rangkupan, S. Kanokpanont, S. Damrongsakkul, "Preparation of Thai silk fibroin/gelatin electrospun fiber mats for controlled release applications," Int. J. Biol. Macromol., vol. 46, no. 5, pp. 544-550, 2010.
[23] B. Zhu, W. Li, N. Chi, R. V. Lewis, J. Osamor, R. Wang, "Optimization of Glutaraldehyde Vapor Treatment for Electrospun Collagen/Silk Tissue Engineering Scaffolds," ACS Omega, vol. 2, no. 6, pp. 2439-2450, 2017.
[24] Z. Zhou, Z. Yang, T. Huang, L. Liu, Q. Liu, Y. Zhao, W. Zeng, Q. Yi, D. Cao, "Effect of Chemical Cross-linking on Properties of Gelatin/Hyaluronic Acid Composite Hydrogels," Polym. Plast. Technol. Eng., vol. 52, no. 1, pp. 45-50, 2013.
[25] Y. Du, X. Q. Gao, Z. Y. Wang, D. Jin, S. Tong, X. K. Wang, "Construction and characterization of three-dimensional silk fibroin-gelatin scaffolds," J. Hard Tissue Biol., vol. 25, no. 3, pp. 269-276, 2016.
[26] M. Simonet, N. Stingelin, J. G. F. Wismans, C. W. J. Oomens, A. Driessen-Mol, F. P. T. Baaijens, "Tailoring the void space and mechanical properties in electrospun scaffolds towards physiological ranges," J. Mater. Chem. B., vol. 2, no. 3, pp. 305-313, 2014.
[27] P. T. J. Hwang, K. Murdock, G. C. Alexander, A. D. Salaam, J. I. Ng, D. J. Lim, D. Dean, H. W. Jun, "Poly(ε-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering," Journal of Biomedical Materials Research - Part A vol. 104, no. 4, pp. 1017-1029, 2016.
[28] S. E. Kim, D. N. Heo, J. B. Lee, J. R. Kim, S. H. Park, S. H. Jeon, I. K. Kwon, "Electrospun gelatin/polyurethane blended nanofibers for wound healing," Biomedical Materials vol. 4, no. 4, pp. 044106 (1-11), 2009.