Search results for: Wireless Local Area Network.
1385 In Cognitive Radio the Analysis of Bit-Error- Rate (BER) by using PSO Algorithm
Authors: Shrikrishan Yadav, Akhilesh Saini, Krishna Chandra Roy
Abstract:
The electromagnetic spectrum is a natural resource and hence well-organized usage of the limited natural resources is the necessities for better communication. The present static frequency allocation schemes cannot accommodate demands of the rapidly increasing number of higher data rate services. Therefore, dynamic usage of the spectrum must be distinguished from the static usage to increase the availability of frequency spectrum. Cognitive radio is not a single piece of apparatus but it is a technology that can incorporate components spread across a network. It offers great promise for improving system efficiency, spectrum utilization, more effective applications, reduction in interference and reduced complexity of usage for users. Cognitive radio is aware of its environmental, internal state, and location, and autonomously adjusts its operations to achieve designed objectives. It first senses its spectral environment over a wide frequency band, and then adapts the parameters to maximize spectrum efficiency with high performance. This paper only focuses on the analysis of Bit-Error-Rate in cognitive radio by using Particle Swarm Optimization Algorithm. It is theoretically as well as practically analyzed and interpreted in the sense of advantages and drawbacks and how BER affects the efficiency and performance of the communication system.Keywords: BER, Cognitive Radio, Environmental Parameters, PSO, Radio spectrum, Transmission Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21551384 GPT Onto: A New Beginning for Malaysia Gross Pollutant Trap Ontology
Authors: Chandrika M.J., Lariyah M.S., Alicia Y.C. Tang
Abstract:
Ontology is widely being used as a tool for organizing information, creating the relation between the subjects within the defined knowledge domain area. Various fields such as Civil, Biology, and Management have successful integrated ontology in decision support systems for managing domain knowledge and to assist their decision makers. Gross pollutant traps (GPT) are devices used in trapping and preventing large items or hazardous particles in polluting and entering our waterways. However choosing and determining GPT is a challenge in Malaysia as there are inadequate GPT data repositories being captured and shared. Hence ontology is needed to capture, organize and represent this knowledge into meaningful information which can be contributed to the efficiency of GPT selection in Malaysia urbanization. A GPT Ontology framework is therefore built as the first step to capture GPT knowledge which will then be integrated into the decision support system. This paper will provide several examples of the GPT ontology, and explain how it is constructed by using the Protégé tool.Keywords: Gross pollutant Trap, Ontology, Protégé.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20091383 Effect of Local Dual Frequency Sonication on Drug Distribution from Nanomicelles
Authors: Hadi Hasanzadeh, Manijhe Mokhtari-Dizaji, S.Zahra Bathaie, Zuhair M. Hassan, Hamid R. Miri, Mahbobe Alamolhoda, Vahid Nilchiani, Hamid Goudarzi
Abstract:
The nanosized polymeric micelles release the drug due to acoustic cavitation, which is enhanced in dual frequency ultrasonic fields. In this study, adult female Balb/C mice were transplanted with spontaneous breast adenocarcinoma tumors and were injected with a dose of 1.3 mg/kg doxorubicin in one of three forms: free doxorubicin, micellar doxorubicin without sonication and micellar doxorubicin with sonication. To increase cavitation yield, the tumor region was sonicated with low level dual frequency of 3 MHz and 28 kHz. The animals were sacrificed 24 h after injection, and their tumor, heart, spleen, liver, kidneys and plasma were separated and homogenized. The drug content in their tumor, heart, spleen, liver, kidneys and plasma was determined using tissue fluorimetry. The results show that in the group that received micellar doxorubicin with sonication, the drug concentration in the tumor tissue was nine and three times higher than in the free doxorubicin group and the micellar doxorubicin without sonication group, respectively. In the micellar doxorubicin with sonication group, the drug concentration in other tissues was lower than other groups (p<0.05). We conclude that dual frequency sonication improves drug release from micelles and increases the drug uptake by tumors due to sonoporation.Keywords: Nanomicelles, Dual frequency ultrasound, Drug delivery
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17891382 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning
Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam
Abstract:
Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.
Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5881381 The Phatic Function and the Socializing Element of Personal Blogs
Authors: Emelia Noronha, Milind Malshe
Abstract:
The phatic function of communication is a vital element of any conversation. This research paper looks into this function with respect to personal blogs maintained by Indian bloggers. This paper is a study into the phenomenon of phatic communication maintained by bloggers through their blogs. Based on a linguistic analysis of the posts of twenty eight Indian bloggers, writing in English, studied over a period of three years, the study indicates that though the blogging phenomenon is not conversational in the same manner as face-to-face communication, it does make ample provision for feedback that is conversational in nature. Ordinary day to day offline conversations use conventionalized phatic utterances; those on the social media are in a perpetual mode of innovation and experimentation in order to sustain contact with its readers. These innovative methods and means are the focus of this study. Though the personal blogger aims to chronicle his/her personal life through the blog, the socializing function is crucial to these bloggers. In comparison to the western personal blogs which focus on the presentation of the ‘bounded individual self’, we find Indian personal bloggers engage in the presentation of their ‘social selves’. These bloggers yearn to reach out to the readers on the internet and the phatic function serves to initiate, sustain and renew social ties on the blogosphere thereby consolidating the social network of readers and bloggers.Keywords: Personal blogs, phatic, social-selves, blog readers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19401380 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture
Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou
Abstract:
Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.Keywords: Concrete, mineral admixture, hydration, structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7151379 Micro-Study of Dissimilar Welded Materials
Authors: E. M. Anawa, A. G. Olabi
Abstract:
The dissimilar joint between aluminum/titanium alloys (Al 6082 and Ti G2) were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was resulted in three distinct regions fusion area in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.
Keywords: Micro-hardness, Microstructure, laser welding, dissimilar jointed materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17631378 Function of Fractals: Application of Non-linear Geometry in Continental Architecture
Authors: Mohammadsadegh Zanganehfar
Abstract:
Since the introduction of fractal geometry in 1970, numerous efforts have been made by architects and researchers to transfer this area of mathematical knowledge in the discipline of architecture and postmodernist discourse. The discourse of complexity and architecture is one of the most significant ongoing discourses in the discipline of architecture from the 70's until today and has generated significant styles such as deconstructivism and parametricism in architecture. During these years, several projects were designed and presented by designers and architects using fractal geometry, but due to the lack of sufficient knowledge and appropriate comprehension of the features and characteristics of this nonlinear geometry, none of the fractal-based designs have been successful and satisfying. Fractal geometry as a geometric technology has a long presence in the history of architecture. The current research attempts to identify and discover the characteristics, features, potentials and functionality of fractals despite their aesthetic aspect by examining case studies of pre-modern architecture in Asia and investigating the function of fractals.
Keywords: Asian architecture, fractal geometry, fractal technique, geometric properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7701377 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an Artificial Neural Network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study include granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R2), Root Mean Square Error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.
Keywords: National development, granite, profitability assessment, ANN models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821376 Natural Disaster Impact on Annual Visitors of Recreation Area: The Taiwan Case
Authors: Ya-Fen Lee, Yun-Yao Chi
Abstract:
This paper aims to quantify the impact of natural disaster on tourism by the change of annual visitors to scenic spots. The data of visitors to Alishan, Sun Moon Lake, Sitou and Palace Museum in Taiwan during 1986 to 2012 year is collected, and the trend analysis is used to predict the annual visitors to these scenic spots. The findings show that 1999 Taiwan earthquake had significant effect on the visitors to Alishan, Sun Moon Lake and Sitou with an average impact of 55.75% during 1999 to 2000 year except for Palace Museum. The impact was greater as closer epicenter of 1999 earthquake. And the discovery period of visitors is about 2 to 9 years. Further, the impact of heavy rainfall on Alishan, Taiwan is estimated. As the accumulative rainfall reaches to 500 mm, the impact on visitors can be predicted.
Keywords: Impact, Natural disaster, tourism, visitors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20101375 Policy Management Framework for Managing Enterprise Policies
Authors: Dahir A. Ga'al, Wardah Zainal Abidin
Abstract:
Policy management in organizations became rising issue in the last decade. It’s because of today’s regulatory requirements in the organizations. To manage policies in large organizations is an imperative work. However, major challenges facing organizations in the last decade is managing all the policies in the organization and making them an active documents rather than simple (inactive) documents stored in computer hard drive or on a shelf. Because of this challenge, organizations need policy management program. This policy management program can be either manual or automated. This paper presents suggestions towards managing policies in organizations. As well as possible policy management solution or program to be utilized, manual or automated. The research first examines the models and frameworks used for managing policies from various perspectives in the literature of the research area/domain. At the end of this paper, a policy management framework is proposed for managing enterprise policies effectively and in a simplified manner.
Keywords: Policy, policy management, policy management program, policy repository.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26171374 Population Structure of European Pond Turtles, Emys orbicularis (Linnaeus, 1758) in Narta Lagoon (Vlora Bay, Albania)
Authors: Enerit Saçdanaku, Idriz Haxhiu
Abstract:
In this study was monitored the population of the European Pond Turtle, Emys orbicularis (Linnaeus, 1758) in the area of Narta Lagoon, Vlora Bay (Albania), from August to October 2014. A total of 54 individuals of E. orbicularis were studied using different methodologies. Curved Carapace Length (CCL), Plastron Length (PL) and Curved Carapace Width (CCW) were measured for each individual of E. orbicularis and were statistically analyzed. All captured turtles were separated in seven different size – classes based on their carapace length (CCL). Each individual of E. orbicularis was marked by notching the carapace (marginal scutes). Form all individuals captured resulted that 37 were females (68.5%), 14 males (25.9%), 3 juveniles (5.5%), while 18 individuals of E. orbicularis were recaptured for the first and some for the second time.
Keywords: Emys orbicularis, female, juvenile, male, population, size – classes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17831373 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: Facial expression recognition, image pre-processing, deep learning, CNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5441372 On the Design of Electronic Control Unitsfor the Safety-Critical Vehicle Applications
Authors: Kyung-Jung Lee, Hyun-Sik Ahn
Abstract:
This paper suggests a design methodology for the hardware and software of the electronic control unit (ECU) of safety-critical vehicle applications such as braking and steering. The architecture of the hardware is a high integrity system such thatit incorporates a high performance 32-bit CPU and a separate peripheral controlprocessor (PCP) together with an external watchdog CPU. Communication between the main CPU and the PCP is executed via a common area of RAM and events on either processor which are invoked by interrupts. Safety-related software is also implemented to provide a reliable, self-testing computing environment for safety critical and high integrity applications. The validity of the design approach is shown by using the hardware-in-the-loop simulation (HILS)for electric power steering(EPS) systemswhich consists of the EPS mechanism, the designed ECU, and monitoring tools.
Keywords: Electronic control unit, electric power steering, functional safety, hardware-in-the-loop simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33691371 Automatic Visualization Pipeline Formation for Medical Datasets on Grid Computing Environment
Authors: Aboamama Atahar Ahmed, Muhammad Shafie Abd Latiff, Kamalrulnizam Abu Bakar, Zainul AhmadRajion
Abstract:
Distance visualization of large datasets often takes the direction of remote viewing and zooming techniques of stored static images. However, the continuous increase in the size of datasets and visualization operation causes insufficient performance with traditional desktop computers. Additionally, the visualization techniques such as Isosurface depend on the available resources of the running machine and the size of datasets. Moreover, the continuous demand for powerful computing powers and continuous increase in the size of datasets results an urgent need for a grid computing infrastructure. However, some issues arise in current grid such as resources availability at the client machines which are not sufficient enough to process large datasets. On top of that, different output devices and different network bandwidth between the visualization pipeline components often result output suitable for one machine and not suitable for another. In this paper we investigate how the grid services could be used to support remote visualization of large datasets and to break the constraint of physical co-location of the resources by applying the grid computing technologies. We show our grid enabled architecture to visualize large medical datasets (circa 5 million polygons) for remote interactive visualization on modest resources clients.
Keywords: Visualization, Grid computing, Medical datasets, visualization techniques, thin clients, Globus toolkit, VTK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17511370 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051369 Property Aggregation and Uncertainty with Links to the Management and Determination of Critical Design Features
Authors: Steven Whittle, Ingrida Valiusaityte
Abstract:
Within the domain of Systems Engineering the need to perform property aggregation to understand, analyze and manage complex systems is unequivocal. This can be seen in numerous domains such as capability analysis, Mission Essential Competencies (MEC) and Critical Design Features (CDF). Furthermore, the need to consider uncertainty propagation as well as the sensitivity of related properties within such analysis is equally as important when determining a set of critical properties within such a system. This paper describes this property breakdown in a number of domains within Systems Engineering and, within the area of CDFs, emphasizes the importance of uncertainty analysis. As part of this, a section of the paper describes possible techniques which may be used within uncertainty propagation and in conclusion an example is described utilizing one of the techniques for property and uncertainty aggregation within an aircraft system to aid the determination of Critical Design Features.Keywords: Complex Systems, Critical Design Features, Property Aggregation, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391368 The Effects of Mobile Phones in Mitigating Cultural Shock Amongst Refugees: Case of South Africa
Authors: Sarah Vuningoma, Maria Rosa Lorini, Wallace Chigona
Abstract:
The potential of mobile phones is evident in their ability to address isolation and loneliness, support the improvement of interpersonal relations, and contribute to the facilitation of assimilation processes. Mobile phones can play a role in facilitating the integration of refugees into a new environment. This study aims to evaluate the impact of mobile phone use on helping refugees navigate the challenges posed by cultural differences in the host country. Semi-structured interviews were employed to collect data for the study, involving a sample size of 27 participants. Participants in the study were refugees based in South Africa, and thematic analysis was the chosen method for data analysis. The research highlights the numerous challenges faced by refugees in their host nation, including a lack of local cultural skills, the separation of family and friends from their countries of origin, hurdles in acquiring legal documentation, and the complexities of assimilating into the unfamiliar community. The use of mobile phones by refugees comes with several advantages, such as the advancement of language and cultural understanding, seamless integration into the host country, streamlined communication, and the exploration of diverse opportunities. Concurrently, mobile phones allow refugees in South Africa to manage the impact of culture shock.
Keywords: Mobile phones, culture shock, refugees, South Africa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941367 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives
Authors: Andreas Theissler, Ian Dear
Abstract:
In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.
Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24771366 Abstraction Hierarchies for Engineering Design
Authors: Esra E. Aleisa, Li Lin
Abstract:
Complex engineering design problems consist of numerous factors of varying criticalities. Considering fundamental features of design and inferior details alike will result in an extensive waste of time and effort. Design parameters should be introduced gradually as appropriate based on their significance relevant to the problem context. This motivates the representation of design parameters at multiple levels of an abstraction hierarchy. However, developing abstraction hierarchies is an area that is not well understood. Our research proposes a novel hierarchical abstraction methodology to plan effective engineering designs and processes. It provides a theoretically sound foundation to represent, abstract and stratify engineering design parameters and tasks according to causality and criticality. The methodology creates abstraction hierarchies in a recursive and bottom-up approach that guarantees no backtracking across any of the abstraction levels. The methodology consists of three main phases, representation, abstraction, and layering to multiple hierarchical levels. The effectiveness of the developed methodology is demonstrated by a design problem.Keywords: Hierarchies, Abstraction, Loop-free, Engineering Design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15141365 SPA-VNDN: Enhanced Smart Parking Application by Vehicular Named Data Networking
Authors: Bassma Aldahlan, Zongming Fei
Abstract:
Recently, there is a great interest in smart parking application. Theses applications are enhanced by a vehicular ad-hoc network, which helps drivers find and reserve satiable packing spaces for a period of time ahead of time. Named Data Networking (NDN) is a future Internet architecture that benefits vehicular ad-hoc networks because of its clean-slate design and pure communication model. In this paper, we proposed an NDN-based frame-work for smart parking that involved a fog computing architecture. The proposed application had two main directions: First, we allowed drivers to query the number of parking spaces in a particular parking lot. Second, we introduced a technique that enabled drivers to make intelligent reservations before their arrival time. We also introduced a “push-based” model supporting the NDN-based framework for smart parking applications. To evaluate the proposed solution’s performance, we analyzed the function for finding parking lots with available parking spaces and the function for reserving a parking space. Our system showed high performance results in terms of response time and push overhead. The proposed reservation application performed better than the baseline approach.
Keywords: Cloud Computing, Vehicular Named Data Networking, Smart Parking Applications, Fog Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261364 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy
Authors: Isao Tomita
Abstract:
The detection of environmental gases, 12CO2, 13CO2, and CH4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO2 of a 3-% CO2 gas at 2 μm with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO2 peaks. In addition, the detection of 12CO2 peaks of a 385-ppm (0.0385-%) CO2 gas in the air is made at 2 μm with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH4 in a small area are attempted. For a 100-% CH4 gas trapped in a ∼ 1 mm3 glass container, the absorption peaks of CH4 are obtained at 1.65 μm with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.
Keywords: Environmental Gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471363 Context Aware Anomaly Behavior Analysis for Smart Home Systems
Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu
Abstract:
The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.
Keywords: Internet of Things, network security, context awareness, intrusion detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12761362 Interaction between Environmental Performance and Logistic System: A Case Study of International Company
Authors: T. Tambovceva, A. Tambovcevs
Abstract:
The activities which are mostly related to the environmental performance need to be pointed, especially how logistics systems influence on environmental performance. This paper analyses how company could lead the initiative in this area by incorporating environmental management principles into their daily activities. The analysis is based on literature review about logistics and environment, the information from company R website as well as face-to-face interviews. A case study is given to show how they can turn practices into green while simultaneously meet the efficiency objectives. The research results show that the adoption of EMS and ISO 14001 certification is an effective tool for the logistics management. Such practices simultaneously reduce the negative contribute to better company performance. The results also show that the emissions to air and water, and energy consumption are the main logistics impacts to the environment.
Keywords: environmental management system, green logistics, information technology, information systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17661361 A Framework for Review Spam Detection Research
Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim
Abstract:
With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers, but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a highquality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.
Keywords: Fake reviews, Feature collection, Opinion spam, Spam detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25171360 Analysis of Linguistic Disfluencies in Bilingual Children’s Discourse
Authors: Sheena Christabel Pravin, M. Palanivelan
Abstract:
Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.
Keywords: Bilingual, children who stutter, children with language impairment, Hidden Markov Models, multi-layer perceptron, linguistic disfluencies, stuttering disfluencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10291359 Development of Thermal Insulation Materials Based On Silicate Using Non-Traditional Binders and Fillers
Authors: J. Hroudova, J. Zach, L. Vodova
Abstract:
When insulation and rehabilitation of structures is important to use quality building materials with high utility value. One potentially interesting and promising groups of construction materials in this area are advanced, thermally insulating plaster silicate based. With the present trend reduction of energy consumption of building structures and reducing CO2 emissions to be developed capillary-active materials that are characterized by their low density, low thermal conductivity while maintaining good mechanical properties.
The paper describes the results of research activities aimed at the development of thermal insulating and rehabilitation material ongoing at the Technical University in Brno, Faculty of Civil Engineering. The achieved results of this development will be the basis for subsequent experimental analysis of the influence of thermal and moisture loads developed on these materials.
Keywords: Insulation materials, rehabilitation materials, lightweight aggregate, fly ash, slag, hemp fibers, glass fibers, metakaolin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24411358 Intelligent Temperature Controller for Water-Bath System
Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar
Abstract:
Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.
To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.
It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.
Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55481357 Dosimetric Comparison of aSi1000 EPID and ImatriXX 2-D Array System for Volumetric Modulated Arc and Intensity Modulated Radiotherapy Patient Specific Quality Assurance
Authors: Jayesh K., Ganesh T., Suganthi D., Mohan R., Rakesh C. J., Sarojkumar D. M., Jacob S. J.
Abstract:
Prior to the use of detectors, characteristics comparison study was performed and baseline established. In patient specific QA, the portal dosimetry mean values of area gamma, average gamma and maximum gamma were 1.02, 0.31 and 1.31 with standard deviation of 0.33, 0.03 and 0.14 for IMRT and the corresponding values were 1.58, 0.48 and 1.73 with standard deviation of 0.31, 0.06 and 0.66 for VMAT. With ImatriXX 2-D array system, on an average 99.35% of the pixels passed the criteria of 3%-3 mm gamma with standard deviation of 0.24 for dynamic IMRT. For VMAT, the average value was 98.16% with a standard deviation of 0.86. The results showed that both the systems can be used in patient specific QA measurements for IMRT and VMAT. The values obtained with the portal dosimetry system were found to be relatively more consistent compared to those obtained with ImatriXX 2-D array system.Keywords: Gamma, IMRT, QA, TPS, VMAT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25781356 To Study the Parametric Effects on Optimality of Various Feeding Sequences of a Multieffect Evaporators in Paper Industry using Mathematical Modeling and Simulation with MATLAB
Authors: Deepak Kumar, Vivek Kumar, V. P. Singh
Abstract:
This paper describes a steady state model of a multiple effect evaporator system for simulation and control purposes. The model includes overall as well as component mass balance equations, energy balance equations and heat transfer rate equations for area calculations for all the effects. Each effect in the process is represented by a number of variables which are related by the energy and material balance equations for the feed, product and vapor flow for backward, mixed and split feed. For simulation 'fsolve' solver in MATLAB source code is used. The optimality of three sequences i.e. backward, mixed and splitting feed is studied by varying the various input parameters.Keywords: MATLAB "fsolve" solver, multiple effectevaporators, black liquor, feeding sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3259