
 

 

 
Abstract—Speech disfluencies are common in spontaneous 

speech. The primary purpose of this study was to distinguish 
linguistic disfluencies from stuttering disfluencies in bilingual Tamil–
English (TE) speaking children. The secondary purpose was to 
determine whether their disfluencies are mediated by native language 
dominance and/or on an early onset of developmental stuttering at 
childhood. A detailed study was carried out to identify the prosodic 
and acoustic features that uniquely represent the disfluent regions of 
speech. This paper focuses on statistical modeling of repetitions, 
prolongations, pauses and interjections in the speech corpus 
encompassing bilingual spontaneous utterances from school going 
children – English and Tamil. Two classifiers including Hidden 
Markov Models (HMM) and the Multilayer Perceptron (MLP), which 
is a class of feed-forward artificial neural network, were compared in 
the classification of disfluencies. The results of the classifiers 
document the patterns of disfluency in spontaneous speech samples 
of school-aged children to distinguish between Children Who Stutter 
(CWS) and Children with Language Impairment CLI). The ability of 
the models in classifying the disfluencies was measured in terms of 
F-measure, Recall, and Precision. 
 

Keywords—Bilingual, children who stutter, children with 
language impairment, Hidden Markov Models, multi-layer 
perceptron, linguistic disfluencies, stuttering disfluencies.  

I. INTRODUCTION 

PEECH disfluencies are distinguished as being either 
linguistic disfluencies, which pre-dominantly contain 

repetitions, interjections and revisions, or stuttering 
disfluencies, which include part of the utterance or syllable 
repetitions, and vowel prolongations. In [1], the authors state 
that all children demonstrate linguistic disfluencies; however, 
CWS are more disfluent and exhibit more stuttering 
disfluencies than the CLI. A child who produces 3% or more 
stuttering-type disfluencies is considered as one who stutters 
[3].  

Syntactic complexity and discourse complexity influence 
the fluent production of speech [2]. According to Adams’ 
“Demands and Capacities” model, when complexity increases, 
the demands for the production of fluent speech may exceed 
the individual’s abilities; therefore, fluency may be 
compromised [2]. Linguistic disfluencies increase with 
linguistic complexity. If linguistic disfluencies in speech are 
produced frequently, linguistic disfluencies may indicate 
difficulties with utterance formulation or word finding [4]. 
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Some research has also shown that the frequency of linguistic 
disfluencies and stuttering disfluencies increase in narrative 
contexts as opposed to conversational contexts for all children 
[5], [6]. 

Veiga et al. analyzed the acoustic characteristics of filled 
pauses vs. segmental prolongations in a corpus of Portuguese 
broadcast news, using prosodic and spectral features to 
discriminate between both categories [7]. A university lectures 
corpus subset was used in [8] with conclusions that the best 
features to identify whether an element should be rated as 
fluent or disfluent are: prosodic phrasing, contour shape, and 
presence/ absence of silent pauses. In [9], the authors analyze 
the prosodic behavior of the different regions of a disfluency 
sequence, pointing out prosodic contrast strategy (pitch and 
energy increases) between the reparandum and the repair. 
Some data evidenced that age might influence a number of 
disfluencies; its amount increases along the speaker’s age. 
Thus, linguistic disfluencies should be categorically 
distinguished from stuttering disfluencies for early diagnosis 
of developmental stuttering and for suitable therapeutic 
intervention. Sequel of studies have highlighted that children 
with language and learning difficulties tend to use more 
linguistic disfluencies than do their peers [11]. To summarize, 
a great number of linguistic disfluencies might be a symptom 
of atypical language acquisition; on the other hand, production 
of linguistic disfluencies might be treated as a natural 
component of non-prepared, spontaneous discourse [12], [13]. 
In [14], the authors introduce a new model for detecting restart 
and repair disfluencies in spontaneous speech transcripts 
called Long Short-Term Memory-Noisy Channel Model 
(LSTM-NCM). The model uses a Noisy Channel Model 
(NCM) to generate n-best candidate disfluency analyses, and a 
LSTM language model to rescore the NCM analyses. 
Additional prosodic information is leveraged along with 
lexical features in [15]; the disfluencies are classified using a 
semi-Markov conditional random field that distinguishes 
disfluent chunks (to be deleted) from fluent chunks 
(everything else). By making chunk-level predictions, 
standard token-level features that can consider the entire 
reparandum and the start of the repair enable the model to 
easily capture the parallelism between these two parts of the 
utterance. 

This paper is organized as follows: Section II describes the 
Speech corpus used to train and evaluate the HMM and MLP. 
Section III introduces the Prosodic and acoustic features. 
Section IV elaborates the classification using HMM and MLP. 
Section V describes the Evaluation phase of the 
experimentation. Section VI delineates the Results and Section 
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VII presents our conclusions on the proposed methodology of 
distinguishing linguistic disfluency from stuttering disfluency.  

II. THE SPEECH CORPUS 

A. Database 

The disfluent speech data corpus was built by collecting 
speech samples from10 school-aged children ranging in age 
between 8 years and 12 years, out of which, five were boys 
and five were girls. Boys pre-dominantly exhibited more 
disfluencies than girls in conversational speech. The corpus 
contains digitized waveforms and transcriptions of a large 
number of sessions in which the children were asked to talk on 
any of the topics pictorially presented to them as a visual 
stimulus. The subjects responded to queries in bilingual 
sentences for which manual and automated transcripts were 
prepared. Totally, 500 sentences were recorded. 
 

TABLE I 
COMPREHENSIVE QUERIES 

Vacations When I Grow Up 

1. When was your last vacation? 
1. What do you aspire to be 

when you grow up? 
2. Describe your favorite vacation 

spot. 
2. Will you help the needy? 

3. With whom do you like to 
spend time with? 

3. How will you spend your 
fortune? 

4. What souvenirs do you buy for 
your friends? 

4. Which is your dream country 
to pursue a career? 

5. How long do you go on 
vacation? 

5. What is your dream portfolio? 

 

Fig. 1 Stimulus material [10] 

B. Characteristics of Disfluencies 

Of the 500 sentences in our corpus, 98 of the sentences 
contained repetitions, 85 contained false starts, 62 sentences 
contained hesitations, 80 sentences contained interjections, 15 
sentences contained Prolongations, 50 sentences included 
Pauses and 25 small sentences were fluent. As well, 15% of 
the sentences were longer and contained multiple disfluencies. 

The disfluent speech corpus was annotated using the 
PRAAT tool on two tiers. Tier 1 of Annotation contains the 
disfluency across the spoken sentences and the Tier 2 of 
Annotation contains the actual transcription. Table II indicates 
the manual assessment of disfluent regions in the spoken 
utterances. 

 

 

Fig. 2 An example of annotated spontaneous disfluent speech from the corpus: F_01 
 

TABLE II 
MANUAL DISFLUENCY ASSESSMENT IN THE SPONTANEOUS SPEECH 

 Repetitions Interjections Prolongations Pauses 

M_01 15 16 7 20 

M_02 20 10 8 18 

F_01 12 12 9 19 

F_02 5 10 7 11 

III. PROSODIC FEATURES 

Disfluent utterances include distinct structural regions based 
on acoustic and prosodic features. Prosodic features derived 
from the energy (energy maximum, minimum and median) of 
the speech signals, the estimated pitch contours, word 

durations, and silences before the word. Filled pauses in 
spontaneous speech have the stretching out trait. The vocal 
cord vibrates periodically and the vocal tract is observed to 
maintain a relatively stable contour throughout the utterance. 
When the speed of speaking becomes faster than the speed of 
preparing its content, a speaker uses filled or unfilled pauses 
until the next speech content resulting from the thinking 
process arrives at the speaking process. 

IV. CLASSIFICATION OF DISFLUENCIES 

A. Hidden Markov Model 

An HMM was built for each disfluency type. The Baum-
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Welch algorithm was used to find the parameters that 
maximize the likelihood of the observations for each HMM 
disfluency model. It is an iterative algorithm that converges to 
a locally optimal solution from the initialization values. The 
HMMs are uniquely described by the notation 

 
      𝜆 𝐴, 𝐵, 𝜋                 (1) 

 
where, ‘A’ is the state-transition probability distribution 
matrix, ‘B’ is the observation symbol probability distribution 
matrix, ‘𝜋’ is the initial state distribution [16]. 

Let 𝜆  denote the parameter set for a disfluent class ‘i’. 
When presented with an observation sequence, 𝑜 , 𝑜 , … . 𝑜  , 
the disfluency class prediction is done as: 
 

Predicted Disfluent Class=argmax 𝑓 𝑜 ,𝑜 , … 𝑜 ; 𝜆     (2) 
 

The first two Formant Frequencies (F1 and F2) were chosen 
as features for training the HMM disfluency models. 
Additional prosodic features were modeled as observation 
likelihoods attached to the N-gram states of the HMM. The 
posterior probabilities were discretized before classification. 

B. MLP Architecture 

In a MLP, several layers composed of single units are 
connected to form a network of layers. Each layer in such a 
neural network computes a function over a vector, which is 
either the input to the network or the output of the previous 
layer. Finally, the model computes an output vector that is 
interpreted as p(y|x). Joined together, these individual layers 
compute a function that is parametrized by the connection 
strength between units of connected layers. These connections 
are usually referred to as the parameters of the neural network, 
or, more commonly, as its weights. A unit of a neural network 
layer, also sometimes referred to as neuron, computes a simple 
non-linear function on the weighted sum of its inputs. Even 
though each unit computes only a simple function, joined 
together, the function that is modeled by the neural network 
can become arbitrarily complex. 

A variety of choices for the activation function f have been 
described in the literature. The only constraint on f is that it 
must be differentiable in order to enable the network to be 
trained using gradient decent. Although linear functions are 
possible, the expressive power of neural networks stems from 
the fact that non-linear transformations are used as activation 
function. Popular choices for f are the sigmoid function 𝜎(x): 
 

 𝜎 𝑥     (3) 
 

In this multilabel classification task, the target vector y can 
therefore be considered a tuple of random variables (y1 to yk). 
In the simplest form of expressing this situation, it is feasible 
to assume that the probability of one class is conditionally 
independent from the other classes. The joint distribution over 
labels can thus be expressed as:  
 

p(y|x) = p(y1, . . . , yk|x) = ∏  𝑝 𝑦 /𝑥                (4) 

C. Training the Neural Network 

The most popular method for minimizing the cost function 
of a neural network is gradient descent. The idea behind 
gradient descent is to compute the gradient of the cost function 
with respect to the weights of the network in order to find the 
direction of steepest descent. 
 

 𝜃 ←  𝜃  𝛽∇ 𝐶 𝑋; 𝜃     (5) 
 

where 𝛽 is the learning rate which determines the size of the 
step into the direction of the steepest descent, X is the training 
set. The cost function, C, which is to be minimized, is a 
function of both, the model parameters θ and the data in the 
training set X. An epoch is said to have passed every time the 
training procedure has processed the training data completely. 
Depending on the data set, its size and the complexity of the 
model along with the characteristics of the machine learning 
task, the data is usually processed several times over several 
epochs. Interestingly, conditioning the learning rate reduction 
on the validation set costs has shown worse performance than 
conditioning it on the validation set F-measure. When the 
model was observed to overfit the training set, the learning 
rate is reduced more often and converges towards zero. Table 
III holds the hyperparameters defined for the MLP. 
 

 

Fig. 3 Architecture of MLP 
 

TABLE III 
HYPERPARAMETERS FOR THE MLP EXPERIMENT 

No. of Hidden 
Layers 

No. of 
Epochs 

Gradient 𝛽 
Validation 

Checks 
70 14 0.0189 0.1 6 

V. EVALUATION 

Precision, which is also referred to as positive predictive 
value, is the fraction of relevant instances among the retrieved 
instances, while Recall, which is also referred as sensitivity is 
the fraction of relevant instances that have been retrieved over 
the total amount of relevant instances. Both precision and 
recall are therefore based on an understanding and measure of 
relevance. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑅 .   

.   .   
  (6) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃
.   

.   .   
  (7) 
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𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒
 ∗

                           (8) 
 
The F-measure better reflects how good a classifier solves 

the classification task on an unbalanced data set. Since 
ultimately, the classifier’s performance in terms of F-measure 
is of interest, it would be desirable to optimize for the F-
measure directly. 

 
TABLE IV 

PREDICTING REPETITIONS 

Classifier Precision Recall F-measure 

HMM 72.58 69.23 70.86 

MLP 84.12 72.31 77.76 

 
TABLE V 

PREDICTING INTERJECTIONS 

Classifier Precision Recall F-measure 

HMM 67.57 60.76 63.98 

MLP 79.21 70.59 74.65 

 
TABLE VI 

PREDICTING PROLONGATIONS 

Classifier Precision Recall F-measure 

HMM 78.57 72.5 75.41 

MLP 87.21 81.03 84 

 
TABLE VII 

PREDICTING PAUSES 

Classifier Precision Recall F-measure 

HMM 75.33 64.56 69.53 

MLP 78.56 77.21 77.88 

 
TABLE VIII 

PREDICTING FLUENT SPEECH 

Classifier Precision Recall F-measure 

HMM 76.23 72.32 74.22 

MLP 85.47 79.42 82.33 

VI. RESULTS AND DISCUSSION 

Filled pauses exhibit the highest F0 increase, and repetitions 
exhibit the highest energy. In our study we could observer that 
sequential filled pauses (e.g. “uh uh uh”) showed successively 
lower starting F0 values. Fig. 4 presents the training of 
Repetition HMM model. Fig. 5 is the description of disfluency 
recognition. 

 

 

Fig. 4 Disfluency Classification using HMM Model 
 

 

Fig. 5 Training and Testing Phase-MLP  
 
 

TABLE IX 
WORD ERROR RATE (WER) FOR AUGMENTED BASELINE PROSODIC FEATURES 

(PITCH CONTOUR, ENERGY, WORD DURATION) WITH ACOUSTIC FEATURES 

Feature Vector WER [%] 

BASELINE 15.2 

BASELINE + 13 MFCC+ ∆MFCC + ∆∆MFCC 13 

 
Word Error Rate (WER) obtained for the Baseline Feature 

vector and the combination of Baseline features augmented 
with Prosodic features are tabulated in Table IX.  

VII. CONCLUSION 

The spontaneous speech of school-aged children were 
recorded and analyzed for distinguished assessment of 
linguistic disfluencies and stuttering disfluencies. Unique 
HMM was built for each type of disfluency and the MLP 
network was built of 10 input neurons indicating 10 prosodic 
feature inputs, 70 neurons in the hidden layer and one output. 
As tabulated, the MLP performed better than the HMM in 
classifying the disfluencies with an accuracy of 82.67%, 
whereas the HMM classify 70% of the disfluent utterances 
correctly. Child language development might be treated from 
the linguistic structural dimension and/ or disfluency rate 
dimension. Linguistic disfluencies are the basis for studying 
the processes of speech production in children. In this study, it 
is evident that fillers might not play the same functional role in 
the child’s speech as in the adult’s. The main question 
addressed the nature of linguistic disfluency is a manifestation 
of child language immaturity. But some qualitative differences 
between the groups were observed. For example, when faced 
with some problems of the utterance planning in spontaneous 
speech, the CWS tended to use filled hesitations, whereas the 
children with LD sought to make silent pauses or repetitions 
of part of a word. Besides that, the CWS had an inclination to 
produce shorter utterance to reduce the cognitive loading in 
utterance programming. 
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